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Abstract—We consider a network of agents that locate them-
selves in an environment through sensor measurements and aim
to transmit a message signal to a base station via collaborative
beamforming. The agents’ sensor measurements result in local-
ization errors, which degrade the quality of service at the base
station due to unknown phase offsets that arise in the agents’
communication channels. Assuming that each agent’s localization
error follows a Gaussian distribution, we study the problem of
forming a reliable communication link between the agents and
the base station despite the localization errors. In particular, we
formulate a discrete optimization problem to choose only a subset
of agents to transmit the message signal so that the variance of
the signal-to-noise ratio (SNR) received by the base station is
minimized while the expected SNR exceeds a desired threshold.
When the variances of the localization errors are below a certain
threshold characterized in terms of the carrier frequency, we
show that greedy algorithms can be used to globally minimize
the variance of the received SNR. On the other hand, when some
agents have localization errors with large variances, we show that
the variance of the received SNR can be locally minimized by
exploiting the supermodularity of the mean and variance of the
received SNR. In numerical simulations, we demonstrate that the
proposed algorithms have the potential to synthesize beamform-
ers orders of magnitude faster than convex optimization-based
approaches while achieving comparable performances using less
number of agents.

Index Terms—collaborative beamforming, localization error,
discrete optimization

I. INTRODUCTION

Collaborative beamforming is a wireless communication
technique in which a network of agents collectively transmit a
common message signal to a base station [1]–[3]. Compared
to single-agent transmission, collaborative beamforming has
the potential to increase the range and rate of communication,
to improve the directivity of the beam pattern, or to decrease
the agents’ individual power consumption while achieving the
same quality of service (QoS) at the base station [4]–[6]. For
example, in a network of N agents, if each agent transmits the
message signal with a fixed power, collaborative beamforming
can lead to a factor of N2 increase in the signal-to-noise ratio
(SNR) received by the base station.
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When the agents are distributed in an environment, which
is the case in most multi-agent planning scenarios, e.g., [7]–
[9], realizing the full potential of collaborative beamforming
proves itself to be a challenge due to the unknown phase
offsets that arise in the agents’ communication channels [10].
The unknown phase offsets, which degrade the QoS at the
base station, has mainly two sources: synchronization errors
between the agents’ local oscillators and the agents’ localiza-
tion errors. The former source has been extensively studied
in the literature, and there are now a number of decentralized
algorithms that can be used to mitigate the undesired effects
of synchronization errors between the agents [4], [11]–[14].
The latter source commonly arises in practice since the agents
typically estimate their positions using sensor measurements
resulting in an error associated with position [15]–[18]. The
objective of this paper is to develop efficient beamforming
methods that optimize the QoS at the base station despite the
agents’ localization errors.

From the analysis perspective, prior work focuses on un-
derstanding the effects of localization errors in collaborative
beamforming. The agents’ localization errors are associated
with the topology of the network and translate to phasing
errors in the transmission [3]. The beam pattern characteris-
tics for randomly generated network topologies is analyzed
using the random array theory [3], [19]–[21]. Specifically,
the authors in [19] consider a setting in which each agent’s
location in the environment is sampled from the same Gaussian
distribution. They prove that, in this setting, the expected
SNR received by the base station decays exponentially with a
rate proportional to the variance of the Gaussian distribution.
In [11], the authors show that, when the agents have fixed
transmission powers and their phasing errors are identically
distributed, the expected SNR increases quadratically with the
number of agents so long as the expected cosine of the phasing
errors is close to one.

In many multi-agent planning scenarios, the agents’ position
estimates follow non-identical distributions, in which case the
aforementioned results cannot be used to synthesize effective
beamformers. Accordingly, in this paper, we consider a set-
ting in which the agents’ localization errors follow Gaussian
distributions with potentially different mean and covariance.
We derive the first- and second-order statistics of the received
SNR as a function of the subset of agents that transmit the
message signal. We then utilize the derived statistics to develop
algorithms that include only a subset of agents in beamforming
to optimize the QoS at the base station.

From the algorithmic perspective, different approaches are
proposed to synthesize beamformers that mitigate the unde-



sired effects of phasing errors in the transmission. Ideally,
with no localization and synchronization errors, the topology
of the network may be used to derive the optimal beamformer,
and we refer to this as the perfect channel state information
(CSI) case. The work [10] considers a case in which no CSI
is available at the agents, i.e., the agents have no statistical
information regarding their localization errors. The authors
propose an iterative algorithm that maximizes the SNR at the
base station by receiving feedback from the base station at
each iteration. Subsequent work further investigates how the
received feedback can be utilized to improve the reliability
and security of communication [22]–[24]. Although feedback-
based approaches successfully improve the QoS at the base
station, such approaches are iterative in nature. Therefore,
their convergence to desired QoS levels may, in general,
require a considerable number of iterations depending on
network topology. In the case of imperfect CSI, i.e., when
a statistical information of the channel is available at the
agents, algorithms based on semi-definite programs (SDPs)
are proposed to ensure that the received SNR is above a
threshold with desired probability [25]–[27]. Similar conic
optimization-based formulations are also common in the robust
beamforming literature [28]–[31]. While SDP formulations
provide a powerful method to improve the QoS without requir-
ing feedback from the base station, they are computationally
expensive and do not scale well with the number of agents.

In this paper, we approach the beamformer design problem
from a discrete optimization perspective and develop three
algorithms to choose a subset of agents to transmit the message
signal to the base station. Given a network of agents with
associated Gaussian localization errors, we seek a subset of
agents to form a beam that achieves the desired QoS require-
ments without receiving feedback from the base station. To the
best of our knowledge, this paper is the first one to employ
discrete optimization techniques for mitigating the effects of
localization errors in collaborative beamforming with provable
performance guarantees. The main contributions of this paper
are as follows:

• First, under the assumption that each agent has a Gaus-
sian localization error, we derive explicit forms of the
expected value and the variance of the received SNR as
a function of the agents that are included in beamforming.
Using the derived expressions, we formulate a novel risk-
sensitive discrete optimization problem: find a subset
of agents to transmit the message signal such that the
variance of the SNR at the base station is minimized
while the expected SNR exceeds a desired threshold.

• Second, we propose two efficient sorting-based algo-
rithms, Greedy and Double-Loop-Greedy (DLG), to solve
the formulated discrete optimization problem and present
sufficient conditions for their optimality. In particular,
we show that the proposed algorithms return an optimal
subset if the variance of the agents’ localization errors is
below a certain threshold which is characterized in terms
of the carrier frequency.

• Third, we prove that the expected value and the vari-
ance of the received SNR are supermodular set func-

tions. Using this property, we develop a third algorithm,
Difference-of-Submodular (DoS), which returns a subset
that is locally optimal for a certain relaxation of the
formulated discrete optimization problem. The DoS al-
gorithm utilizes the so-called submodular-supermodular
procedure [32] as a subprocedure, and its local optimality
guarantee is independent of the carrier frequency.

The results presented in this paper show that, in the presence
of localization errors, we may achieve the full potential
of collaborative beamforming with minimum variability by
including only a subset of the agents in beamforming. In
particular, when the agents have small localization errors
characterized in terms of the carrier frequency, we can globally
minimize the variance of the SNR received by the base station
using sorting-based algorithms. On the other hand, if some of
the agents violate the small localization error condition, we
can locally minimize the variance of the received SNR by
exploiting the supermodularity of the mean and variance of
the SNR.

In numerical simulations, we compare the performance of
the proposed algorithms with an SDP-based beamformer and
demonstrate that all three algorithms, i.e., Greedy, DLG, and
DoS, exhibit similar performances to that of the SDP-based
beamformer while using less number of agents in beamform-
ing. Moreover, for problem instances with large number of
agents, Greedy and DLG algorithms compute the agent subset
orders of magnitude faster than the SDP-based beamformer.
Related work: A preliminary version of this paper appeared
in [33], where we present the Greedy algorithm to solve
the subset selection problem formulated in this paper. The
major differences of this considerably extended version from
the preliminary version are the following. First, we provide
a numerical example illustrating the potential suboptimality
of the Greedy algorithm and present the DLG algorithm,
which improves the empirical performance over the Greedy
algorithm. Second, we prove the supermodularity of the mean
and variance of the received SNR as a function of the
selected agent subsets and present the DoS algorithm to
locally minimize the variance of the received SNR. Third, we
provide numerical simulations to compare the performance of
the Greedy, DLG, and DoS algorithms. Finally, we provide
detailed proofs for all technical results.

In addition to the aforementioned references, the subject
of this paper is also related to the beamformer design when
the agents have only local position information. Specifically,
in [34], [35], the authors consider a setting in which the
global location information is not available at the agents and
design an antenna array that approximates the performance
of a linear antenna array using only the information of exact
inter-agent distances. Here, we consider a setting in which the
statistics of the global location information is available at the
agents. Hence, both the problem formulation and the proposed
solution approaches are considerably different from the ones
presented in [34], [35].

The idea of using only a subset of available agents in
beamforming is previously investigated in the literature for
various purposes. In [19], [36], [37], the authors choose a
subset of sensor nodes to control the maximum sidelobe level.



The work [38] develops a discete-optimization based algorithm
to design a sensor array for spatial sensing applications. Fi-
nally, the reference [39] studies the antenna selection problem
in multicast beamforming. Unlike the above references, we
consider the problem of achieving the desired SNR level at
the base station with minimum variability despite localization
errors and design discrete optimization-based algorithms that
have provable performance guarantees.

II. SYSTEM MODEL

We consider a group of N∈N agents that are distributed in
an environment. Each agent is equipped with a single ideal
isotropic antenna with a constant transmit power P>0. The
agents’ objective is to transmit a common message signal
m(t)∈R to a base station equipped with a single antenna.

A. Communication Channel

Regarding the communication channel between the agents
and the base station, we make the following assumptions.

1) The transmitted signal m(t) propagates in free space with
no reflection or scattering.

2) There is no mutual coupling effects between the agents’
antennas.

3) The local oscillators of all agents are time- and frequency-
synchronized.

4) The base station is located in the far-field region.
5) The agent i∈[N ] transmits the signal m(t) over a nar-

rowband wireless channel hi∈C.
6) All channels attenuate the signal m(t) at the same level,

i.e., |hi|=|hj | for all i, j∈[N ].
The assumption that the signal propagates in free space may

hold in cluttered environments when the agents communicate
with the base station at low VHF frequencies [40], [41].
Similarly, mutual coupling effects may be avoided when the
agents are sufficiently separated from each other. To achieve
the frequency and time synchronizations, the agents may
follow a separate short-range radio protocol [6], [11]. Finally,
the signal attenuation for all channels may be similar in
scenarios in which the distance between the agents and the
base station is significantly larger than inter-agent distances.

B. Collaborative Transmission Model

We consider a subset S⊆[N ] of agents that collectively
transmit the message signal m(t) to the base station. All agents
modulate m(t) with the carrier signal Re{ej2πfct}, where fc is
the carrier frequency. Each agent i∈S adjusts the phase of the
transmission with the complex gain wi∈C where |wi|=

√
P ,

i.e., the transmit power is P . Then, the signal received by the
base station is

yS(t) := Re

{
ej2πfctm(t)

∑
i∈S

wihi

}
+ n(t)

where n(t) is additive white Gaussian noise. Without loss of
generality, we let wi=

√
Pejδi and hi=aiejηi for each i∈[N ].

The angle δi∈[0, 2π) denotes the phase of the gain wi, and
it is a design parameter. The magnitude ai>0 and the phase

ηi∈[0, 2π) characterize the channel hi between the base station
and the agent i∈[N ]. Recall that the agents’ local oscillators
are time-synchronized. Then, the phase offset ηi of a signal
at the base station relative to a signal transmitted by an agent
located at ~ri∈R3 (in Cartesian coordinates) is [42]

ηi = −2πfc
C
〈~ri, ~rc〉. (1)

In (1), ~rc∈R3 is the unit vector pointing in the known direction
of the base station, C is the speed of light, and 〈·, ·〉 is the
inner product of two vectors.

We assume that the agents’ local positions {~ri : i∈[N ]} are
not exactly known. In particular, for i∈[N ], we assume that
~ri∼N (µi,Σi) where µi∈R3 and Σi∈R3×3 are, respectively,
the known mean and the known covariance of the Gaussian
distribution. We note that the first and second order statistics
of position estimates are typically easy to obtain in practice
[43], [44]. Finally, we assume that ~ri and ~rj are independent
for i, j∈[N ] such that i 6=j.

For a given subset S⊆[N ] and the corresponding phase
parameters δi for each i∈S, let the array factor be

F (S, δ) :=

∣∣∣∣∣∑
i∈S

ej(δi+ηi)

∣∣∣∣∣
where δ:=[δi|i∈S] is the vector of phase parameters. Assum-
ing that |hi|=|hj | for all i, j∈[N ], the magnitude of the array
factor is proportional to the square root of the SNR received
by the base station [10]. Let the total phase be Φi:=δi + ηi.
The square of the the array factor yields the beamforming gain
G(S, δ) that is proportional to the received SNR and given by

G(S, δ) := F 2(S, δ) =
∑
i∈S

∑
j∈S

cos
(

Φi − Φj

)
. (2)

III. PROBLEM STATEMENT

The beamforming gain G(S, δ) is a fundamental quantifier
of the quality of a communication link with the base station
as it is proportional to the received SNR. Hence, to establish
a reliable communication link, we want the beamforming gain
to be high with minimum variability.

When the relative phase offsets ηi are known, one can
maximize G(S, δ) by selecting a pair (S̃, δ̃) such that

(S̃, δ̃) ∈ argmax
S⊆[N ],

δ∈[0,2π)N

G(S, δ).

An optimal solution to the above optimization problem can be
obtained by choosing S̃=[N ] and δ̃i=−ηi for all i∈S̃ . To see
this, recall that the total phase Φi=δi + ηi, and note that

G(S, δ) =
∑
i∈S

∑
j∈S

cos
(

Φi − Φj

)
≤ N2. (3)

The upper bound in (3) is attained if and only if S=[N ] and
Φi=Φj for all i, j∈S, i.e., the total phases are aligned.

In this paper, we focus on a scenario in which G(S, δ) is a
random variable since the agents’ local positions {~ri:i∈[N ]}
are such that ~ri∼N (µi,Σi). In such a scenario, a reasonable



objective might be to maximize the expected beamforming
gain by selecting a pair (S, δ) such that

(S, δ) ∈ argmax
S⊆[N ],

δ∈[0,2π)N

E
[
G(S, δ)

]
. (4)

In Section IV, we show that the pair (S, δ)=([N ], δ̂), where
δ̂=[δ̂i|i ∈ [N ]] such that

δ̂i := −E[ηi] for all i ∈ [N ],

constitutes a solution to the problem in (4). In other words,
E[G(S, δ)] is maximized by including all the agents in beam-
forming and aligning their total phases Φi in expectation.

Although including all the agents in beamforming maxi-
mizes the expected beamforming gain, due to the random
phase errors, this approach may actually decrease the prob-
ability with which the beamforming gain exceeds a certain
threshold. To overcome this undesirable effect, we consider
the variance of the beamforming gain as a risk measure and
formulate a discrete optimization problem that includes only
a subset of the agents in beamforming. In particular, we first
fix the vector δ of phase parameters such that the expected
beamforming gain is maximized, i.e., δ=δ̂. Then, we aim to
choose a subset S⊆[N ] of agents that minimizes the variance
of the beamforming gain while ensuring that the expected
beamforming gain exceeds the desired threshold. The formal
problem statement is as follows.
Problem 1: (Subset selection) For a constant Γ>0, and the
fixed vector of phase parameters δ=δ̂, find S?⊆[N ] such that

S? ∈ argmin
S⊆[N ]

Var
(
G(S, δ̂)

)
(5a)

subject to: E
[
G(S, δ̂)

]
≥ Γ. (5b)

Formulations that are similar to the subset selection problem
are widely used in risk-sensitive optimization models [45],
[46]. By formulating a discrete optimization problem, we
aim to design algorithms that improve the reliability of the
communication link by minimizing the variability of received
SNR and utilizing only a subset of the agents in beamforming.
Finally, we remark that, in the subset selection problem, each
agent i∈[N ] needs only its own position information, i.e.,
distribution of ηi, to set δ=δ̂. Hence, in the considered setting,
the agents adjust their phases in a distributed manner.

IV. STATISTICAL PROPERTIES OF THE BEAMFORMING
GAIN

In this section, we first derive the explicit form of the
expected beamforming gain E[G(S, δ)] and show that the pair
(S, δ)=([N ], δ̂) is a solution to the problem in (4). We then
set δ=δ̂ and derive the explicit form of Var(G(S, δ̂)). The
derived explicit forms are utilized to develop subset selection
algorithms in the following sections.

Consider the definition of G(S, δ), given in (2), and recall
that, for all i∈[N ], Φi=ηi+δi where ηi=2πfc 〈~ri, ~rc〉/C and
~ri∼N (µi,Σi). Then, for a given vector δ∈[0, 2π)N of phase
parameters, we have Φi∼N (θi, γi) where

θi :=
2πfc
C

〈
µi, ~rc

〉
+ δi and γi :=

4π2f2
c

C2

〈
~rc,Σi~rc

〉
. (6)

We refer to γi as the effective error variance in the localization
of the ith agent. Using the fact that Φi∼N (θi, γi), we obtain
the explicit form of E[G(S, δ)] as follows.
Proposition 1: Let vi:=exp(−γi). We have

E
[
G(S, δ)

]
= |S|+

∑
i∈S

∑
j∈S
j 6=i

√
vivj cos(θi − θj). (7)

The following result shows that we can maximize the
expected beamforming gain by including all the agents in
beamforming and aligning their phases in expectation.
Proposition 2: A pair (S, δ) solves the problem in (4) if and
only if S=[N ] and, for all i, j∈[N ], we have(

(δi + E[ηi])− (δi + E[ηi])
)

mod 2π = 0. (8)

We provide proofs for the above propositions in Appendix
A. The condition S=[N ] indicates that all the agents should be
included in beamforming to maximize the expected beamform-
ing gain. On the other hand, the condition in (8) implies that
the agents’ total phases should be aligned in expectation. Note
that the vector δ̂, where δ̂i=−E[ηi] for all i∈[N ], satisfies the
condition in (8). In the subset selection problem, we set δ=δ̂
and aim to find a subset S⊆[N ] that solves the risk-sensitive
optimization problem given in (5a)-(5b).

When δ=δ̂, we have θi=θj for all i, j∈[N ], implying that

E
[
G(S, δ̂)

]
= |S|+

∑
i∈S

∑
j∈S
j 6=i

√
vivj . (9)

Next, we derive the variance of G(S, δ̂) as follows.
Proposition 3: Let vi:=exp(−γi). We have

Var
(
G(S, δ̂)

)
=
∑
i∈S

∑
j∈S
j 6=i

(
1− vivj

)2

+ 2
∑
i∈S

∑
j∈S
j 6=i

∑
k∈S
k 6=i
k 6=j

(
1− vi

)2√
vjvk. (10)

We provide a proof for the above result in Appendix A. The
proof exploits the equivalence E[exp(tX)]=exp(jµt−σ2t2/2)
where X∼N (µ, σ) and the independence of ~ri and ~rj for i6=j
to obtain the explicit form.

V. AGENT SELECTION UNDER LOCALIZATION ERRORS

In this section, we propose three algorithms to solve the sub-
set selection problem and analyze their optimality guarantees.
Throughout this section, we assume that the problem in (5a)-
(5b) has a feasible solution. For a given problem instance, the
validity of this assumption can be easily verified by checking
whether E[G([N ], δ̂)]≥Γ due to the following result.
Proposition 4: For any S⊆S ′⊆[N ], E[G(S, δ̂)]≤E[G(S ′, δ̂)].

The above result follows immediately from the fact that
E[G(S, δ̂)] is a sum of nonnegative terms; hence, adding an
element to the subset can only increase the sum.



A. Greedy Algorithm

In this section, we consider a simple greedy algorithm
to solve the subset selection problem and provide sufficient
conditions for its optimality. The Greedy algorithm, shown in
Algorithm 1, first sorts the agents’ effective error variances
γi, defined in (6), in ascending order. We note that the sorting
operation can be performed in O(N log(N)) for an array of
length N [47]. Initializing the output set S to the empty set, the
algorithm then iteratively adds the agent with the next lowest
effective error variance to the output set until the constraint
E[G(S, δ̂)]≥Γ is satisfied.

Algorithm 1 Greedy

1: Input: γi for all i∈[N ], Γ∈R.
2: Sort γi such that γi1≤γi2≤. . .≤γiN .
3: S:=∅, k:=1
4: while E[G(S, δ̂)]<Γ do
5: S:=S ∪ {ik}, k:=k + 1

6: return S.

We now present sufficient conditions on the set {γi : i∈[N ]}
for which the Greedy algorithm returns an optimal solution to
the problem in (5a)-(5b). Let the total effective error variance
of a subset S⊆[N ] be measured by the function V :2[N ]→R
where V (S):=

∑
i∈S γi. Consider the problem of choosing a

subset S ′⊆[N ] that satisfies the constraint in (5b) and has the
minimum total effective error variance, i.e.,

S ′ ∈ arg min
S⊆[N ]

V (S) (11a)

subject to: E
[
G(S, δ̂)

]
≥ Γ. (11b)

The next result, together with Proposition 4, implies that the
Greedy algorithm yields an optimal solution to the problem in
(11a)-(11b).
Proposition 5: For any K∈N such that K≤N , we have

arg min
S⊆[N ]:
|S|=K

V (S) = arg max
S⊆[N ]:
|S|=K

E
[
G(S, δ̂)

]
.

The above result follows from the fact that the derivative
of the expected beamforming gain E[G(S, δ̂)] with respect
to γi, where i∈S, is always negative. It can be shown that
the problems in (5a)-(5b) and (11a)-(11b) are not equivalent
in general. Hence, the greedy approach is, in general, not
optimal to solve the subset selection problem. However, there
are certain sufficient conditions, which are formalized below,
under which such an approach becomes optimal.
Theorem 1: For a given set {γi : i∈[N ]} of effective error
variances, let γi1≤γi2≤...≤γiN where ik∈[N ]. A solution to
the problem in (11a)-(11b) is also a solution to the problem
in (5a)-(5b) if either one of the following conditions hold:

(C1) E[G(S, δ̂)]≥Γ where S={i1, i2},
(C2) γiN≤0.83.
We provide a proof for the above result in Appendix A.

The main idea in the proof is to show that the derivative of
Var(G(S, δ̂)) with respect to maxi∈S γi is positive. Condition
(C1) follows from the fact that, when |S|≤2, the derivative is
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Fig. 1: Maximum localization error variance σ2
max allowed

for the optimality of the greedy algorithm as a function of the
carrier frequency fc. Note that the localization error tolerance
is relaxed at lower frequencies (longer wavelengths).

always positive. Condition (C2) follows from the fact that,
when γiN≤0.83, the derivative is positive regardless of the
size of the set S. For such γiN , the subset with minimum total
effective error variance is the one that minimizes the variance
of the beamforming gain; hence, the problems in (11a)-(11b)
and (5a)-(5b) become equivalent when (C1) or (C2) holds.

Theorem 1 states that if all the agents have “small” effective
error variances, then the Greedy algorithm returns an optimal
solution to the subset selection problem. In particular, it fol-
lows from Theorem 1 that a sufficient condition for optimality
characterized by the carrier frequency is

max
i∈[N ]

〈
~rc,Σi~rc

〉
≤ 0.83C2

4π2f2
c

.

For example, suppose that Σi=σ
2
i I3×3, where I3×3 is

the identity matrix, and let σ2
max:=maxi σ

2
i . Then, we have

σ2
max≤ 0.83C2

4π2f2
c

as the sufficient condition (C2). In Figure 1,
we graphically illustrate the trade-off between the carrier
frequency fc and the maximum variance σ2

max under which
the Greedy algorithm is optimal. Note that as fc increases
(resulting in shorter wavelength), condition (C2) requires
smaller position error variance, whereas longer wavelengths
increase the error tolerance. For example, at lower VHF fre-
quencies, e.g., fc=40 MHz for which the effective wavelength
is λc=C/fc≈7.5 meters, the agents are allowed to have
localization error variance up to 1 square meter. Hence, for
this frequency range, the position error tolerance can easily
be achieved with existing localization algorithms [15], [48].

B. Suboptimality of the Greedy Algorithm

In this section, we illustrate with a numerical example that
the Greedy algorithm may fail to return an optimal solution
to the subset selection problem instances that violate the
sufficient conditions presented in Theorem 1.

Let the total number of agents be N=4, and the expected
gain threshold be Γ=3.3. Furthermore, let the ordered set
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Fig. 2: An illustration of the numerical example showing that
the Greedy algorithm may return a suboptimal subset. The
variance of the beamforming gain is minimized by the subset
which has the maximum total effective error variance.

(γ1, γ2, γ3, γ4) of effective error variances be (0.4, 0.6, 3, 5).
It can be shown by direct calculations that this problem in-
stance violates the sufficient conditions presented in Theorem
1. Moreover, using Proposition 5 and the monotonocity of
Var(G(S, δ̂)) in S⊆[N ], it can be shown that |S?|=3. Let
S1:={1, 2, 3}, S2:={1, 2, 4}, S3:={1, 3, 4}, and S4:={2, 3, 4}
be all possible subsets of {1, 2, 3, 4} containing three elements.
In Figure 2, we provide the expected value and the variance of
the beamforming gain G(Sk, δ̂) as well as the total effective er-
ror V (Sk) for each Sk. All subsets Sk satisfy E[G(Sk, δ̂)]≥Γ.
Observe that the optimal solution for this problem instance
is the subset S4 which has the maximum total effective error
variance V (S4) instead of the minimum one V (S1). Therefore,
for this problem instance, the Greedy algorithm does not yield
the optimal solution to the subset selection problem.

The above numerical example illustrates a counterintu-
itive fact: for some problem instances, the optimal subset
consists of the agents with the highest effective localization
error variances. This phenomenon arises due to the con-
structive/destructive interference of the sinusoids in (2). Next,
we modify the Greedy algorithm to account for the fact
that for some instances the agents with the highest effective
localization error variances may provide an optimal solution
to the subset selection problem.

C. Double-Loop-Greedy for Improved Empirical Performance

Inspired by the numerical example given in the previous
section, as the second approach to solve the subset selection
problem, we propose the Double-Loop-Greedy (DLG) algo-
rithm shown in Algorithm 2. Similar to the Greedy algorithm,
the DLG algorithm first sorts the agents’ effective error
variances γi in ascending order. It then initializes two sets,
namely, S1 and S2, to the empty set. Starting from the agent
with the lowest effective error variance, at each iteration, the
agent with the next lowest effective error variance is iteratively
added to the set S1 until the constraint E[G(S1, δ̂)]>Γ is
satisfied. Note that S1 is the same as the Greedy algorithm.

Algorithm 2 Double-Loop-Greedy (DLG)

1: Input: γi for all i∈[N ], Γ∈R.
2: Sort γi such that γi1≤γi2≤. . .≤γiN .
3: S1:=∅, S2:=∅, k:=1, l:=N
4: while E[G(S1, δ̂)]<Γ do
5: S1:=S1 ∪ {ik}, k:=k + 1

6: while E[G(S2, δ̂)]<Γ do
7: S2:=S2 ∪ {il}, l:=l − 1

8: if Var(G(S1, δ̂))<Var(G(S2, δ̂)) then S := S1

9: else S := S2

10: return S.

Similarly, starting from the agent with the highest effective
error variance, at each iteration, the agent with the next highest
effective error variance is iteratively added to the set S2 until
the constraint E[G(S2, δ̂)]>Γ is satisfied. Finally, the DLG
algorithm compares the variance of the beamforming gain for
S1 and S2, and outputs the one with smaller value. We note
that the time complexity of the DLG algorithm is the same as
the time complexity of the Greedy algorithm.
Optimality of the DLG algorithm: For a given problem
instance, the subset S⊆[N ] returned by the DLG algorithm
is guaranteed to satisfy Var(G(S, δ̂))≤Var(G(S ′, δ̂)) where
S ′⊆[N ] is the subset returned by the Greedy algorithm. Hence,
the DLG algorithm also provides an optimal solution to the
problem in (11a)-(11b) under the sufficient conditions stated
in Theorem 1. Moreover, as can be seen from the numerical
example given in the previous section, the DLG algorithm
may also return an optimal solution to instances on which the
Greedy algorithm performs poorly.

D. Difference-of-Submodular (DoS) Algorithm

Both the Greedy and DLG algorithms are guaranteed to
return optimal solutions to the subset selection problem under
the sufficient conditions stated in Theorem 1. In this section,
we propose a third approach to solve the subset selection
problem, which always returns a locally optimal solution to
a certain relaxation of the subset selection problem. Although
the proposed third approach is computationally more demand-
ing, its local optimality guarantee is independent of the carrier
frequency unlike the greedy approaches.

Before presenting the proposed approach, i.e., Difference-
of-Submodular (DoS) algorithm, we first provide a defini-
tion of submodularity and show that both E[G(S, δ̂)] and
Var(G(S, δ̂)) are supermodular set functions.
Definition 1: A set function f :2Ω→R is submodular if for
every X,Y⊆Ω with X⊆Y and every e∈Ω\Y , we have
f(X∪{e})− f(X) ≥ f(Y ∪ {e})− f(Y ).

A set function f :2Ω→R is said to be supermodular if the
set function −f is submodular.
Theorem 2: Both E[G(S, δ̂)] and Var(G(S, δ̂)) are supermod-
ular set functions.

A proof of Theorem 2 is provided in Appendix A. Next, we
formalize the notion of local optimality for discrete optimiza-
tion problems and introduce the DoS algorithm which utilizes
the results of [32] as subprocedures.



Algorithm 3 Difference-of-Submodular (DoS)

1: Input: γi for all i∈[N ], Γ∈R, λ0>0, α>1.
2: S:=∅, k:=0.
3: while E[G(S, δ̂)]<Γ do
4: f(·):=−λkE[G(·, δ̂)], g(·):=−Var(G(·, δ̂))
5: S:=SSP(f(·), g(·))
6: k:=k + 1, λk:=αλk−1.
7: return S .

Definition 2: [32] For a set function φ:2Ω→R, a sequence
{St ⊆ Ω : t ∈ N} is said to converge to a local minimum if
there exists a constant M∈N such that φ(Sm)=φ(Sn) for all
m,n≥M , and for any k∈N, φ(Sk)≤φ(Sl) for all l≤k.

Let f :2Ω→R and g:2Ω→R be submodular set functions.
In [32], the authors present an algorithm, called Submodular-
Supermodular-Procedure (SSP), that returns a local optimal
solution to the following problem

min
S⊆Ω

f(S)− g(S). (12)

The DoS algorithm, shown in Algorithm 3, utilizes the SSP
as a subprocedure to return a locally optimal solution to a
certain relaxation of the subset selection problem. In particular,
it takes two parameters λ0>0 and α>1 as inputs as well as
the agents’ effective localization error variances γi and the
expected gain threshold Γ. At the kth iteration, where k∈N,
using the SSP as a subprocedure, the DoS algorithm finds a
locally optimal solution to the following problem

min
S⊆[N ]

Var
(
G(S, δ̂)

)
− λkE

[
G(S, δ̂)

]
(13)

where λk is iteratively defined as λk=αλk−1. The algorithm
terminates when the solution returned by the SSP satisfies
E[G(S, δ̂)]≥Γ.
Convergence of the DoS algorithm: For the DoS algorithm
to terminate, the subprocedure SSP should output a subset
S⊆[N ] such that E[G(S, δ̂)]≥Γ. At the kth iteration, the SSP
finds a locally optimal solution to the problem in (13) by
computing successive modular approximations of the function
Var(G(S, δ̂)) and finding a globally optimal solution to each
of the resulting approximation problems. Since λ0>0 and
α>1, the parameter λk increases at each iteration. Hence,
in terms of the objective value, the globally optimal solution
of the approximate problems become closer to the globally
optimal solution of maxS E[G(S, δ̂)], which is S=[N ]. Since
we assumed at the beginning that there exists a feasible
solution to the subset selection problem, the DoS algorithm
is guaranteed to terminate for some finite k∈N.
Optimality of the DoS algorithm: As mentioned earlier, at
each iteration, the DoS algorithm computes a locally optimal
solution to the problem in (13). Hence, the subset returned by
the DoS algorithm is a locally optimal solution to the following
relaxation of the subset selection problem

min
S⊆[N ]

Var
(
G(S, δ̂)

)
− λk?E

[
G(S, δ̂)

]
(14)

where k? is the number of iterations until the convergence
of the DoS algorithm. We also note that the above problem

formulation is sometimes referred to as a “regularized version”
of the original constrained optimization problem [49]. Such
regularization approaches to solve the original problems are
also common in portfolio management [50] and reinforcement
learning [51]–[53], among many others.

VI. NUMERICAL SIMULATIONS

We present numerical simulation results that demonstrate
the performance of the proposed algorithms on randomly
generated instances of the subset selection problem. All com-
putations are run on a 3.1-GHz desktop with 32 GB RAM
using the toolbox [54] for the implementation of the SSP (step
5 in the DoS algorithm).

A. Suboptimality Ratio on Small-Scale Instances

We compare the suboptimality of the proposed algorithms
as a function of three problem parameters: the total number
N of agents, the maximum localization error γmax:=min{γ :
γ≥γi, for all i∈[N ]}, and the expected beamforming gain
threshold Γ=βΓmax where 0<β≤1 and Γmax:=E[G([N ], δ̂)]
is the maximum expected beamforming gain that can be
achieved by the agents.

For a given problem instance, we measure the performance
of an algorithm by the suboptimality ratio (SR) of its output.
Specifically, let S? be an optimal solution to the given problem
instance (5a)-(5b), which, for small N , can be computed
by considering all subsets S⊆[N ]. Moreover, let S be the
(possibly suboptimal) output of a given algorithm. We define
the SR of the algorithm on the given instance as

SR :=
Var
(
G(S, δ̂)

)
Var
(
G(S?, δ̂)

) .
All proposed algorithms, i.e., Greedy, DLG, and DoS, have
SR≥1 since their output S satisfies E[G(S, δ̂)]≥Γ.

In the first set of experiments, we investigate the relationship
between the algorithms’ SR, the total number N of agents,
and the bound γmax on the agents’ effective localization error
variances. For a given N and γmax, a problem instance consists
of {γi: i ∈[N ]} where each γi is uniformly randomly selected
from the interval (0, γmax). We set the expected beamforming
gain threshold as Γ=0.6Γmax to allow the algorithms to output
subsets of different sizes if it is optimal to do so. Recall that the
DoS algorithm has only local optimality guarantees. Hence,
the SR of the algorithm’s output depends on the initialization
of the SSP. Accordingly, for each problem instance, we run
the DoS algorithm 10 times using different initializations and
report the performance of the best output. Finally, we set λ0=1
and α=2.

For each N∈{6, 8, 10} and each γmax∈{1, 2, . . . , 20}, we
generate 100 problem instances and illustrate the average
SRs of all algorithms in Figure 3 (top). As can be seen
from the figure, all algorithms show near-optimal performance
(SR≤ 1.3) for all (N ,γmax) pairs. Recall from Theorem 1
that, when γmax≤0.83, both the Greedy and DLG algorithms
are guaranteed to have SR=1. Moreover, the DLG algorithm
is always guaranteed to have smaller SR than the Greedy
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Fig. 3: Suboptimality ratios (SRs) of the proposed algorithms averaged over 100 randomly generated subset selection problem
instances. (Top) SRs when the total number of agents is N∈{6, 8, 10} and the effective localization error variances {γi : i ∈ [N ]}
are generated randomly from the interval (0, γmax). (Bottom) SRs when the total number of agents is N∈{6, 8, 10} and the
expected beamforming gain threshold is Γ=βΓmax.

algorithm. The results shown in Figure 3 (top) empirically
witness these theoretical guarantees. Moreover, as can be seen
from the figure, both the Greedy and DLG algorithms perform
well (SR ≤ 1.1) even when the sufficient optimality condition,
γmax≤0.83, is violated. The DoS algorithm shows comparable
performance to that of the Greedy and DLG algorithms when
γmax≥10. However, for small effective localization error vari-
ances, the Greedy and DLG algorithms perform significantly
better than the DoS algorithm. Finally, note that the SR of the
DoS algorithm increases with increasing total number N of
agents in general. On the other hand, the SR of the Greedy and
DLG algorithms, in general, remain at the same level despite
the increasing total number of agents.

In the second set of experiments, we investigate the rela-
tionship between the algorithms’ SRs, the total number N of
agents, and the normalized threshold β=Γ/Γmax. For given N
and β, a problem instance consists of {γi : i∈[N ]} where each
γi is selected uniformly randomly from the interval (0, 10),
i.e., γmax=10. Finally, we set λ0=1 and α=2, and run the
DoS algorithm with 10 random initializations.

For each N∈{4, 6, 8} and each β∈{0.1, 0.2, . . . , 1}, we
generate 100 problem instances. The average SRs of the
algorithms over the generated instances are shown in Figure 3

(bottom). As can be seen from the figure, all algorithms have
average SR less than 1.6 for each (N, β) pair. Recall from
Theorem 1 that, for instances in which the threshold Γ can
be attained using two agents, the Greedy and DLG algorithms
have SR=1. For small β values, we observe that the Greedy
and DLG algorithms achieve SR=1 since, in most problem
instances, the threshold is attained by using two agents. Similar
to the first set of experiments (Figure 3 (top)), we observe that
the SR of the DoS algorithm increases with increasing N in
general. Moreover, the performance of the DoS algorithm, in
general, improves with increasing β values.

The empirical performance evaluation of the proposed algo-
rithms on small-scale instances show that all three algorithms,
Greedy, DLG, and DoS, achieve near-optimal performance
(SR≤ 1.6) for a range of N , β, and γmax values. Although
the Greedy and DLG algorithms have theoretical optimality
guarantees only for small γmax and β values, they perform
considerably well (SR≤ 1.1) even for large γmax and β values.
On the other hand, although the local optimality guarantee of
the DoS algorithm is independent of the problem parameters,
the performance of the algorithm is, in general, comparable
(SR ≤ 1.1) to that of the Greedy and DLG algorithms only
for large γmax and β values.
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Fig. 4: Performance comparison of the proposed algorithms with an SDP-based beamformer. (Left) For a given threshold
Γ=βΓmax, the normalized variances of the beamforming gains are similar for all approaches. (Middle) The proposed algorithms
achieves the same performance by employing strict subsets of the agent network when possible. (Right) Greedy and DLG
approaches synthesize beamformers orders of magnitudes faster than the SDP-based beamformer.

B. Performance Comparison with an SDP-Based Beamformer

We compare the performance of the proposed algorithms
with a semi-definite programming-based (SDP-based) beam-
forming algorithm. SDP-based methods are widely used in
robust beamforming literature to mitigate the degrading effects
of uncertain parameters on the beam pattern [28], [29], [55],
[56]. Accordingly, for comparison, we synthesize a beamform-
ing vector w?∈CN where

w? ∈ arg min
w∈CN

‖w‖22 (15a)

subject to: E[wHHw] ≥ Γ (15b)

∀i ∈ [N ], |wi|2 ≤ 1. (15c)

In (15a)-(15c), the matrix H∈CN×N is H=hhH where
hH=[h1, h2, . . . , hN ], and wH=[w1, w2, . . . , wN ]. The con-
straint in (15c) ensures that wi=

√
Pejδi for some P≤1.

A solution to the problem in (15a)-(15c) is a beamformer
w? that attains the desired threshold Γ with minimum total
power while respecting the individual power constraints in
(15c). It can be shown that a solution to the problem in
(15a)-(15c) can be computed exactly by solving an SDP [30],
[55]. To synthesize the beamformer w?, we utilized the SDP
solver of the CVX toolbox [57] with its nominal parameters.
Note that the beamformer w? minimizes the total transmit
power of the antenna array while ensuring that the expected
beamforming gain exceeds the desired threshold Γ. Therefore,
it represents a solution to a convex relaxation of the problem

min
S⊆[N ],δ∈CN

|S|

subject to E[G(S, δ)] ≥ Γ

which is a risk-neutral version of the subset selection problem.
For given w?=[w?1 , w

?
2 , . . . , w

?
N ], we let the corresponding

optimal subset be S?={i∈[N ] : |w?i | > ε} where ε=10−2.
We generate 100 subset selection problem instances by

setting N=40 and selecting the error variances {γi : i ∈ [N ]}
uniformly randomly from the interval (0, 10), i.e., γmax=10.
For the DoS algorithm, we set λ0=1 and α=2, and run the

algorithm with 10 random initializations. We compare the
performance with respect to three metrics: the average variance
of the beamforming gain, the average size of the selected
subset, and the average computation time.

Figure 4 (left) shows the normalized variance of the beam-
forming gain, i.e., κ=Var(G(S?, δ))/Var(G([N ], δ̂)), versus
the normalized threshold β=Γ/Γmax. In the figure, we do
not plot the results of the DLG algorithm since it is almost
exactly the same as the Greedy algorithm. As can be seen
from the figure, the proposed discrete-optimization-based al-
gorithms achieve similar performance to that of the SDP-based
beamformer. The variance of the SDP-based beamformer is, in
general, smaller than the variance of the proposed algorithms
since the problem in (15a)-(15c) is a convex relaxation of the
subset selection problem.

Figure 4 (middle) demonstrates the trade-off between the
normalized threshold β and the average size of the optimal
subset S?. The plot for the DLG algorithm is omitted in
the figure since the average size of the subsets selected
by the DLG algorithm is almost exactly the same as the
Greedy algorithm. As can be seen from the figure, for β<1,
the proposed algorithms employ strict subsets of the agent
network [N ] where N=40. On the other hand, the SDP-based
beamformer includes all the agents to beamforming for all
β>0. Combined with the results shown in Figure 4 (left), this
result suggests that the proposed algorithms achieve similar
performance to that of the SDP-based approach using less
number of agents. Hence, in a sense, the proposed algorithms
improve the capabilities of the agent network as they allow
the utilization of the agents that are not part of beamforming
for other purposes in general.

Finally, Figure 4 (right) shows the computation times for
all algorithms. As can be seen from the figure, the Greedy
and DLG algorithms run orders of magnitude faster than the
SDP-based beamformer. On the other hand, the DoS algorithm
takes longer than the SDP-based beamformer to select a subset
in general. The long computation time is partially due to
the fact that we run the DoS algorithm with 10 random
initializations to improve its performance. We observe in our



experiments that the variance of the beamforming gain for the
subset selected by the DoS algorithm decreases considerably
as the number of random initializations used in the DoS
algorithm increases. Therefore, there is a trade-off between
the computation time of the DoS algorithm and the quality of
the beamformer it synthesizes.

The empirical evaluations presented above suggests that
the proposed discrete optimization-based approaches have the
potential to synthesize beamformers with similar performances
to that of the convex optimization-based beamformers using
significantly less number of agents. Furthermore, when the
Greedy and DLG algorithms are employed to synthesize beam-
formers, the required computation time for the synthesis can be
significantly reduced with respect to SDP-based approaches.

VII. CONCLUSIONS

We considered a network of agents that are distributed in an
environment in which they locate themselves through sensor
measurements and aim to transmit a message signal to a base
station. Under the assumption that the agents have Gaussian
localization errors, we developed three discrete optimization-
based algorithms, Greedy, Double-Loop-Greedy (DLG), and
Difference-of-Submodular (DoS), each of which chooses a
subset of agents to optimize the quality-of-service at the base
station. Specifically, the developed algorithms either globally
or locally minimize the variance of the signal-to-noise ratio
(SNR) received by the base station while guaranteeing that
the expected SNR is above a desired threshold. We empir-
ically showed that the proposed algorithms achieve similar
performances with a convex optimization-based algorithm
while using significantly less number of agents. Moreover, the
Greedy and DLG algorithms run orders of magnitude faster
than the convex optimization-based algorithm.

In this work, we proposed the DoS algorithm to locally
minimize the variance of the received SNR when the agents’
localization errors have large variances. Although the DLG
algorithm achieves comparable performances to that of the
convex optimization-based algorithm with less number of
agents, its computational requirements may hinder its appli-
cability to scenarios in which the size of the agent network
is large. An interesting future direction might be to develop
beamforming algorithms that have optimality guarantees and
run fast even on large scale systems.
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APPENDIX A

In this appendix, we provide proofs for all results presented
in this paper. We first provide a simple technical lemma which
allows us to prove the main results.
Lemma 1: For a given set {xi ∈ R : i∈[N ]} of real numbers,
the following equality holds:(

N∑
i=1

∑
j 6=i

xixj

)2

=2

N∑
i=1
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j 6=i

x2
ix

2
j + 4
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k 6=i
k 6=j

x2
ixjxk
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N∑
i=1

∑
j 6=i

∑
k 6=i
k 6=j

∑
l 6=i
l 6=j
l 6=k

xixjxkxl (16)

Proof of Lemma 1: We prove the claim by induction on N .
Base case: For the base case, i.e., N = 1, all terms on both
right and left hand sides are equal to zero since the set is a
singleton. Therefore, the claim holds.
Inductive step: Assume that the claim holds for N . We now
show that the equality holds also for N + 1. Using the simple
formula (a+ b)2=a2 + 2ab+ b2, we obtain(

N+1∑
i=1

∑
j 6=i

xixj

)2

=
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By the induction hypothesis, we have A1=B1+B2+B3 where
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Using simple algebraic manipulations, we obtain

A3 +B1 = 2
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Note that the first term on the right hand side of (17) is the
first term on the right hand side of (16). Let

C1 = B2 + 4x2
N+1
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xjxk.

It can be shown that C1 and C2 are the second and third terms
in the right hand side of (16). As a result, we conclude that
the claim holds. �
Proof of Proposition 1: By taking the expectation of the both
sides of (2), we obtain E

[
G(S, δ)

]
=E

[∑
i∈S

∑
j∈S

cos(Φi − Φj)

]
(18a)

=E
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i∈S
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]
(18b)

=|S|+
∑
i∈S

∑
j 6=i

E
[

cos(Φi − Φj)
]

(18c)

=|S|+
∑
i∈S

∑
j 6=i

(
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(18e)

=|S|+
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i∈S
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j 6=i

√
vivj cos(θi − θj). (18f)

The equality in (18b) follows directly from the observation
that cos(Φi − Φi)=cos(0)=1. We obtain (18c) by using
the linearity of expectation. Equality in (18d) follows from
the trigonometric identity cos(x − y) = cos(x) cos(y) +
sin(x) sin(y). Under the assumption that Φi and Φj are
independent for i6=j, we obtain (18e) using the characteristic
function of Gaussian random variables. Finally, the equality
in (18f) follows from the definition vi := e−γi and the above
mentioned trigonometric identity. �
Proof of Proposition 2: For any given S⊆[N ], E[G(S, δ)]
is maximized if and only if (θi−θj) mod 2π=0 because
cos(x)≤1 for any x∈R and cos(x)=1 if and only if x
mod 2π=0. Recalling that θi=E[ηi]+δi, we conclude that, for
any given S⊆[N ], E[G(S, δ)] is maximized if and only if the
condition stated in the proposition holds for all i, j∈[N ]. Fi-
nally, the result S=[N ] follows since |S|+

∑
i∈S
∑
j 6=i
√
vivj

monotonically increases with the size of S. �

Proof of Proposition 3: We now derive the explicit
form of the variance of the beamforming gain. Recall that
Var(G(S, δ̂))=E[G(S, δ̂)2]−E[G(S, δ̂)]2. We have

E
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cos
(
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))2]
.

Using the trigonometric identity 2 sin(x) cos(x)=sin(2x),
together with the fact that E[sinλX]=0 for λ∈N and
X∼N (0, σ2), it can be shown that K3=K31+K32 where

K31 = E
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.

Using the characteristic function of Gaussian random vari-
ables, the identity 2 cos2(x)− 1=1− 2 sin2(x)=cos(2x), and
Lemma 1, it can further be shown that
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As a result,

E
[
G(S, δ̂)2

]
=K1 +K2 +

∑
i∈S

∑
j 6=i

(1 + v2
i v

2
j )

+ 2
∑
i∈S

∑
j 6=i

∑
k 6=i
k 6=j

(1 + v2
i )
√
vjvk

+
∑
i∈S

∑
j 6=i

∑
k 6=i
k 6=j

∑
l 6=i
l 6=j
l 6=k

√
vivjvkvl.



Similarly, for E[G(S, δ)]2, using the characteristic function of
Gaussian random variable, together with Lemma 1, we have

E
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Since Var[G(S, δ̂)]=E[G(S, δ̂)2]−E[G(S, δ̂)]2, we conclude
the result. �
Proof of Proposition 5: Recall that vi=exp(−γi) by defini-
tion. By taking the derivative of (9) with respect to γk for an
arbitrary k∈S, we obtain

∂E[G(S, δ̂)]
∂γk

= −
∑
j∈S
j 6=k

exp

(
− γk + γj

2

)
≤ 0.

The above inequality implies that decreasing the value of the
maximum γk increases the value of the expected beamforming
gain. The result then follows from the definition of V (S). �
Proof of Theorem 1: We first show that if E[G(S, δ̂)]≥Γ
for S={i1, i2}, then a solution to the problem in (11a)-(11b)
is a solution to the subset selection problem. Recall that
γi1≤γi2≤. . .≤γiN . Then, when E[G(S, δ̂)]≥Γ for S={i1, i2},
the subset S is a solution to the problem in (11a)-(11b).
Now, observe from (10) that among the subsets S ′⊆[N ] that
satisfy |S ′|=2, the subset S={i1, i2} is the one that minimizes
Var(G(S ′, δ̂)). Moreover, since all the terms in the right
hand side of (10) are nonnegative, adding a new element to
a subset S ′⊆[N ] that satisfy |S ′|=2 can only increase the
value of Var(G(S ′, δ̂)). Consequently, the subset S={i1, i2}
is the subset that satisfies the constraint E[G(S, δ̂)]≥Γ and
minimizes the variance of the beamforming gain. Hence, the
claim holds.

We will now show that the second condition in the statement
of the theorem is also a sufficient condition for the equivalence
of the problems in (11a)-(11b) and (5a)-(5b) in terms of
optimal solutions. Without loss of generality, let

0.83 ≥ γ1 ≥ γ2 ≥ . . . ≥ γN ≥ 0. (19)

We take the derivative of Var(G(S, δ̂)) with respect to γ1 and
show that the derivative is always nonnegative. Equivalently,
we show that the variance decreases as the maximum effective
error variance γi decreases.

Recall that vi=exp(−γi). After some algebra, we obtain

∂Var(G(S, δ̂))
∂γ1

=4
∑
j 6=1

v1vj(1− v1vj)

+ 4v1

(
1− v1
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√
vjvk

− 2
∑
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(1− vj)2
∑
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k 6=j

√
v1vk. (20)

Using (19), we obtain the following three inequalities which
will be used to bound each term on the right hand side of (20):

1)
∑
j∈S
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v1vj(1− v1vj) ≥ (|S| − 1)v2
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Consequently, we have

∂Var(G(S, δ))
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+ 8
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2

)
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By rearranging the terms and using that γ1≤0.83, we obtain

∂Var(G(S, δ̂))
∂γ2

1

≥2(|S| − 1)
√
v1(1− v1)×[

2(|S| − 1)(v1)3/2 − (|S| − 2)(1− v1)

]
≥0.

Finally, since the above inequality implies that the variance
can be decreased by decreasing the value of γ1, an optimal
solution to the problem in (11a)-(11b) is an optimal solution
to the subset selection problem when γ1≤0.83. �
Proof of Theorem 2: We first establish the supermodularity of
E[G(S, δ̂)]. For notational simplicity, let G(S):=G(S, δ̂). For
X,Y⊆[N ] such that X⊆Y , let X ′=X∪{e} and Y ′=Y ∪{e}
where e∈[N ]\Y . We have,

Xdiff := E[G(X ′)]− E[G(X)] = 1 + 2
√
ve
∑
i∈X

√
vi,

Ydiff := E[G(Y ′)]− E[G(Y )] = 1 + 2
√
ve
∑
i∈Y

√
vi.

Using the fact that vi ≥ 0 and X⊆Y , we obtain

Xdiff − Ydiff = −2
√
ve

∑
i∈Y \X

√
vi ≤ 0.

Hence, we conclude that E[G(S, δ̂)] is supermodular.



We now show the supermodularity of Var(G(S, δ̂)). For
X,Y⊆[N ] such that X⊆Y , let X ′=X∪{e} and Y ′=Y ∪{e}
where e∈[N ]\Y . Then, we have

Xdiff : = Var
(
G(X ′)

)
−Var

(
G(X)

)
= 2

∑
i∈X

(1− vevi)2 + 2(1− ve)2
∑
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∑
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√
vivj

+ 4
√
ve
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∑
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(1− vi)2√vj ,

Y diff : = Var
(
G(Y ′)

)
−Var

(
G(Y )

)
= 2

∑
i∈Y

(1− vevi)2 + 2(1− ve)2
∑
i∈Y

∑
j 6=i

√
vivj

+ 4
√
ve
∑
i∈Y

∑
j 6=i

(1− vi)2√vj .

Using the fact that vi ≥ 0 and X⊆Y , it is then straightforward
to show that Xdiff − Ydiff≤0. This concludes the proof. �
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