
Dense Incremental Metric-Semantic Mapping
via Sparse Gaussian Process Regression

Ehsan Zobeidi1 Alec Koppel2 Nikolay Atanasov1

Abstract— We develop an online probabilistic metric-
semantic mapping approach for autonomous robots relying
on streaming RGB-D observations. We cast this problem as
a Bayesian inference task, requiring encoding both the geo-
metric surfaces and semantic labels (e.g., chair, table, wall)
of the unknown environment. We propose an online Gaussian
Process (GP) training and inference approach, which avoids the
complexity of GP classification by regressing a truncated signed
distance function representation of the regions occupied by
different semantic classes. Online regression is enabled through
sparse GP approximation, compressing the training data to
a finite set of inducing points, and through spatial domain
partitioning into an Octree data structure with overlapping
leaves. Our experiments demonstrate the effectiveness of this
technique for large-scale probabilistic metric-semantic mapping
of 3D environments. A distinguishing feature of our approach is
that the generated maps contain full continuous distributional
information about the geometric surfaces and semantic labels,
making them appropriate for uncertainty-aware planning.

I. INTRODUCTION

In the near future, robots may assist in many transporta-
tion, construction, security, and environmental monitoring
services. Safe application of autonomous systems to tasks,
specified in human-understandable terms, requres an under-
standing of both the 3-D geometry and the object identities,
affordances, and operational context of the environment. This
paper develops a metric-semantic mapping algorithm, using
streaming RGB-D measurements onboard a robot, to recon-
struct geometric surfaces and their semantic identity (e.g.,
chairs, tables, doors). We specifically focus on a probabilistic
approach so that confidence and quantile information may be
incorporated into decision-making in pursuit of certifiable
safety and autonomous uncertainty reduction.

To build geometric and semantic understanding of the
environment, robotic systems must discern patterns in infor-
mation obtained with every measurement. While the amount
of measured data keeps growing over time, the underlying
geometric and semantic structure of the scene may not.
Hence, an important objective for metric-semantic mapping
algorithms is to build expressive maps whose memory and
complexity requirements are affordable.

Occupancy mapping [1]–[8] is a problem in which one
seeks to distinguish between occupied and free space. For

We gratefully acknowledge support from ARL DCIST CRA W911NF-
17-2-0181, NSF NRI CNS-1830399, and ONR SAI N00014-18-1-2828.

1Department of Electrical and Computer Engineering,
University of California, San Diego, La Jolla, CA 92093, USA
{ezobeidi,natanasov}@ucsd.edu

2Computational and Information Sciences Directorate,
U.S. Army Research Laboratory, Adelphi, MD 20783, USA
alec.e.koppel.civ@mail.mil

Fig. 1: RGB images (first column), segmented images (second
column), and depth images (third column) used by the proposed
approach for online construction of dense metric-semantic maps.

each point in space, we explicitly store occupancy infor-
mation, which may be made very accurate with sufficiently
dense point clouds or voxel grids. However, the memory
and computation requirements of such dense representa-
tions quickly become infeasible for large domains. Implicit
function representations of geometric surfaces, for example,
based on a Truncated Signed Distance Function (TSDF) [3],
[9]–[12], are attractive because they enable accurate con-
tinuous surface representations with a finite number of pa-
rameters. TSDF representations are also useful for collision
checking and human-understandable mesh generation. Ex-
isting work, however, either forgoes probabilistic represen-
tations in the interest of scalability or makes independence
assumptions amongst the map elements (voxels, points).

Classification of environment surfaces into semantic cate-
gories is important for context understanding and specifica-
tion of complex robot tasks [13]–[15]. However, classifica-
tion paradigms necessitate point estimates because efficient
probabilistic classification remains an open challenge in
machine learning, due to prior and data likelihoods not
being conjugate (one may employ Laplace approximations
to partially mitigate this challenge – see [16]).

For this reason, our focus on TSDF regression for different
semantic categories but in a Bayesian setting. Specifically, to
incorporate spatial correlation into a probabilistic resolution-
free TSDF map of the 3-D environment, we employ Gaussian
Process (GP) regression. GPs are a probabilistic framework
amenable to continuous map representations [17]–[19]. Un-
fortunately, onboard sensor data is not a direct observation
of TSDF and, moreover, GP regression requires cubic com-
plexity in the number of training examples. To ameliorate
these challenges, first, we propose a transformation to the raw
observations into a training dataset of TSDF values specific
to different semantic classes. This data, however, grows over

time, as the same scene is observed multiple times, and is not
necessarily representative of the true underlying environment
complexity. There are various ways to address bottlenecks
of non-parametric statistics [20], [21] but, in our setting,
we observe that sensory data collected from identical spatial
locations can be compressed significantly before GP training
without affecting the TSDF posterior. Moreover, we notice
that points that are far away in a map are unlikely to be
correlated. In this regard, one might consider local kriging,
decomposing the spatial domain into subdomains and making
predictions at a test location using only the training points
contained within the subdomain. Unfortunately, discontinu-
ities at the boundaries of the subdomains make stitching
the domain together again difficult. Another ensemble meth-
ods construct multiple local estimators and use a weighted
combination of their predictions, as in Bayesian commit-
tee machines [22], [23], sparse probabilistic regression, or
infinite mixtures Gaussian process experts [24]. These ap-
proaches avoid the discontinuities present in local kriging
at significant computational cost. Inspired by the Octomap
framework [2], we propose an efficient alternative approach
to remove discontinuities that decomposes the environment
into an Octree of overlapping subdomains. Combining these
ideas leads to an online probabilistic mapping approach that
generates dense metric-semantic surfaces and, yet, remains
computationally and memory efficient even in large-scale
complex environments. Our main contributions are to:
• develop an online Gaussian Process training and infer-

ence algorithm that enables 3-D semantic segmentation
of the environment through TSDF regression,

• ensure controllable computation and memory complex-
ity while providing continuous probabilistic 3-D repre-
sentations of large-scale environments,

• evaluate the proposed metric-semantic mapping ap-
proach in simulated and real-world public datasets.

Our algorithm retains full distributional information and may
be used either offline, with all sensory data provided in
advance, or online, processing RGBD observations incre-
mentally as they arrive.

II. PROBLEM FORMULATION

Consider a robot navigating in an unknown environment
represented as a subset of Euclidean space, X ⊂ R3. The
environment consists of two disjoint subsets, comprising
obstacles and free space, i.e., X = O ∪ F . The obstacle
region O is a closed set that is a pairwise disjoint union of
N closed sets, i.e., O = ∪Ni=1Oi. Each subset Oi denotes
the region occupied by object instances from one semantic
class. For example, O1 may be the space occupied by all
chairs, while O2 may be the space occupied by all tables.

The robot is equipped with an RGBD sensor that provides
observations of the objects in its vicinity at each time step
t. A semantic segmentation algorithm [25] is applied to the
RGB images to obtain the classes of observed objects, while
the depths of the object surfaces are provided by the depth
images. Example images are provided in Fig. 1. The sensed
information is defined formally below.

gt,1(x) x ∈ X#

x̂up

ct,i = 1
x̂ ∈ Gt,1

ct,j = 2
x̂t,j

λt,i

λt,j

u

v

x

y

xc

yc

zc

Fc

z = 1

u

v

ηi

ηj

y

z

x

pose {Rt,pt}

Camera
Frame

World Frame

Fig. 2: Sensor observation at time t showing the depth λt,i, λt,j

and class ct,i, ct,j measurements obtained along sensors rays ηi,
ηj ∈ E when the sensor is at position pt with orientation Rt. The
inducing points X# (c.f. Sec. IV-A) close to the observed surface
are shown in gray.

Definition 1. A sensor frame E = {ηj}Mj=1 is a set of
vectors ηj ∈ R3 such that e>3 ηj = 1, where ej is the j-
the standard basis vector.

Definition 2. A sensor observation at time t is a collection
of depth λt,j ∈ R+ and object class ct,j ∈ {1, ..., N}
measurements acquired by the RGBD sensor along the
directions of the sensor frame vectors ηj ∈ E.

At time t, the j-th sensor ray starts at the sensor position
pt ∈ R3 and has direction Rtηj , determined by the sensor
orientation Rt ∈ SO(3). The ray may have finite length if
it hits the obstacle set O. We define the relationship among
the object sets Oi and the sensor observations λt,j , ct,j next.
The space Oi, occupied by the i-th object class, is defined
implicitly as the level set of a signed distance function.

Definition 3. The directional truncated signed depth func-
tion (DTSDF) hi(x,η) of object class Oi, is the signed depth
from x ∈ X to the boundary ∂Oi in direction η ∈ R3, i.e.,

hi(x,η) :=

{
−min

(
dη(x, ∂Oi), d̄

)
if x ∈ Oi

min
(
dη(x, ∂Oi), d̄

)
if x ∈ X \ Oi,

dη(x, ∂Oi) := min
{
d ≥ 0

∣∣ x + dη ∈ ∂Oi
}
, (1)

where the depth is truncated to a maximum of d̄ ∈ R+.

Def. 3 states that hi(pt,Rtηj) is the depth from sensor
position pt to obstacle set Oi along the direction Rtηj of the
j-th ray at time t. The class observation ct,j is determined
by the object set Oi with minimum absolute DTSDF to pt
along Rtηj :

ct,j = arg min
i∈{1,...,N}

|hi(pt,Rtηj)|. (2)

The depth observation λt,j is a noisy measurement of the

depth hct,j (pt,Rtηj) to the nearest object class:

λt,j = hct,j (pt,Rtηj) + ε ε ∼ N (0, σ2), (3)

where σ2 is the variance of the depth measurement noise.
These definitions are illustrated in Fig. 2.

Given sensor poses pt, Rt and streaming onboard
observations λt,j , ct,j for j ∈ {1, . . . ,M} and t ∈
{1, . . . , T}, the main objective of this work is to construct
a metric-semantic map of the observed environment online
by estimating the functions hi(x,η) for i = 1, . . . , N .
Note that {hi} implicitly define the object sets Oi =
{x ∈ X | minη hi(x,η) ≤ 0}. The DTSDF hi(x,η) is de-
fined for an arbitrary direction η. To reduce the dimension
of its domain, we define its minimum over the directions η.

Definition 4. The truncated signed depth function (TSDF)
fi(x) of object class Oi is the signed depth from x ∈ X to
the boundary ∂Oi, i.e.,

fi(x) := hi(x,η
∗) where η∗ = arg min

η
|hi(x,η)| (4)

We propose an online Gaussian Process (GP) regression
approach to maintain a distribution GP(µt,i(x), kt,i(x,x

′))
over the TSDF functions fi(x) conditioned on the sensor
observations {λk,j , ck,j}t,Mk=1,j=1 up to time t. In Sec. IV,
we discuss techniques for online training over a finite set
of inducing points and present the equations for inferring
the depth and class distributions at arbitrary (test) locations
x in the environment X . Since we target online training
and inference, in Sec. V, we partition the domain X into
overlapping regions, organized in an octree data structure,
and perform independent regression in each region.

III. GAUSSIAN PROCESS REGRESSION BACKGROUND

A Gaussian Process (GP) is a set of random vari-
ables such that the joint distribution of any finite subset
of them is Gaussian. A GP-distributed function f(x) ∼
GP(µ0(x), k0(x,x′)) is defined by a mean function µ0(x)
and a covariance (kernel) function k0(x,x′). The mean and
covariance are such that for any finite set X = {x1, . . . ,xn},
the random vector f(X) := [f(x1), . . . , f(xn)]

> ∈ Rn has
mean with j-th element µ0(xj) and covariance matrix with
(j, k)-th element k0(xj ,xk) for j, k = 1, . . . ,K. Given a
training dataset D = {(xj , yj)}nj=1 generated according to
yj = f(xj) + εj with noise εj ∼ N (0, σ2

j), the posterior
distribution of the random function f(x) can be obtained
from the joint distribution of the value f(x) at an arbitrary
location x and the random vector y := [y1, . . . , yn]

> of
measurements. In detail, the joint distribution is:[
f(x)

y

]
∼ N

([
µ0(x)
µ0(X)

]
,

[
k0(x,x) k0(x, X)
k0(X,x) k0(X,X) +D

])
, (5)

where D ∈ Rn×n is a diagonal matrix with Di,i = σ2
i ,

while the corresponding conditional distribution f(x)|D ∼
GP(µn(x), kn(x,x′)) has mean and covariance functions:

µn(x) = µ0(x) + k0(x, X)(k0(X,X) +D)−1(y − µ0(X)),

kn(x,x′) = k0(x,x′)− k0(x, X)(k0(X,X) +D)−1k0(X,x′).

Computing the GP posterior has cubic complexity in the
number of observations n due to the n×n matrix inversion.

IV. PROBABILISTIC METRIC-SEMANTIC MAPPING

While the sensor measurements {λt,j , ct,j} are generated
according to the models in (2) and (3) that depend on
{hi(x,η)}, we focus on approximating the TSDF functions
{fi(x)}, whose domains are lower-dimensional. Hence, the
sensor data {λt,j , ct,j}Mj=1 is first transformed into training
sets Dt,i, suitable for updating the distribution of {fi(x)}.

A. Training Set Construction

The class measurements allow us to associate the sensed
data with a particular semantic class, while the depth mea-
surements allow us to estimate the points where the sensor
rays hit the object sets Oi. In detail, we define the following
point sets for each detected semantic class at time t:

Gt,i = {x̂ ∈ R3
∣∣ x̂ = λt,jRtηj + pt and ct,j = i}. (6)

The points x̂ ∈ Gt,i lie in the continuous space X and the
values fi(x̂) of the TSDFs are close to zero since the sensor
rays hit an object surface at these locations.

As shown in Prop. 1 below, the complexity of online
GP training can be improved by forcing the training data
to come from a finite set of points X# ⊂ X , such as a
grid discretization (see Fig. 2). In detail, we choose points
x ∈ X# that are at most ε > 0 away from the points in
Gt,i and approximate their TSDF values fi(x) ≈ gt,i(x).
Precisely, the training data sets are defined at time t as:

Dt,i = {(x, gt,i(x))|x ∈ X#,∃x̂ ∈ Gt,i s.t. ||x− x̂||2 ≤ ε}.
(7)

The TSDF value gt,i(x) of a training point x is obtained
by projecting x to the depth image plane and approximating
its depth from the depth values of nearby pixels. In detail,
suppose ηj is the pixel closest to the projection of x (red
pixel in Fig. 2) and let x̂j ∈ Gt,i be the coordinates of its
ray endpoint (blue point in Fig. 2). Let x̂right and x̂up (two
cyan points in Fig. 2) be the ray endpoints of two adjacent
pixels. Then, gt,i(x) is the signed depth from x to the plane
defined by x̂j , x̂right, and x̂up:

gt,i(x) := n>(x− x̂j), n := sign(m>(pt − x̂j))m,

m =
(x̂right − x̂)× (x̂up − x̂)

‖(x̂right − x̂)× (x̂up − x̂)‖
,

(8)

where m is the normal of the plane and the signed distance
from pt to the plane is positive because the sensor is known
to be outside of the object set Oi.

B. Gaussian Process Regression

Let GP(µt−1,i(x), kt−1,i(x,x
′)) be prior GP distributions

over the signed depth functions fi(x) conditioned on past
data Dt−1,i, . . . ,D1,i. We take µ0,i(x) = L where L is
truncation value in TSDF, and we use sparse matern covari-
ance function as the kernel k0,i(x,x′). Given the training
set Dt,i constructed at time t, we seek to compute the
posteriors fi(x)

∣∣Dt,i, . . . ,D1,i ∼ GP(µt,i(x), kt,i(x,x
′))

for each semantic class i. The complexity of computing a GP
posterior scales cubically with the number of observations
in the training set Dt,i, limiting the applicability to online
settings as mentioned in Sec. III. We make a key observation
that limiting the training data points x to come from a
finite set X#, as done in Sec. IV-A, may be used to reduce
the GP traning complexity from cubic in the number of
observations

∑
t |Dt,i|, which grows unbounded with time,

to cubic in the number of distinct observed points from X#.
We formalize this in the following theorem, establishing that
the GP posterior remains unchanged if we merge training
data obtained from the same spatial locations.

Proposition 1. Consider f(x) ∼ GP(µ0(x), k0(x,x′)). Let:

X = {x1 , . . . ,x1 ,x2 , . . . ,x2 , . . . ,xn , . . . ,xn }
Y = {y1,1, . . . , y1,m1

, y2,1, . . . , y2,m2
, . . . , yn,1, . . . , yn,mn

}

be data generated from the model yi,j = f(xi) + ηi,j with
ηi,j ∼ N (0, σ2

i) for i = 1, . . . , n and j = 1, . . . ,mi. Let:

X̂ = {x1, . . . ,xn}, Ŷ =

{
1

m1

m1∑
j=1

y1,j , . . . ,
1

mn

mn∑
j=1

yn,j

}

be a compressed version of the data generated from the
model f(xi) with noise η̂i ∼ N (0,

σ2
i

mi
). Then, f(x)|X,Y

and f(x)|X̂, Ŷ have the same Gaussian Process distribution
GP(µn(x), kn(x,x′)) with:

µn(x) = µ0(x) + k0(x, X̂)(D̂ + k0(X̂, X̂))−1(ζ̂ − µ0(X̂)),

kn(x,x′) = k0(x,x′)− k0(x, X̂)(D̂ + k0(X̂, X̂))−1k0(X̂,x′),

where D̂ ∈ Rn×n is a diagonal matrix with D̂i,i =
σ2
i

mi
and

ζ̂ ∈ Rn is a vector with elements ζ̂i := 1
mi

∑mi

j=1 yi,j .

Proof. See Appendix A.

Prop. 1 shows that the complexity of online GP training
can be reduced without changing the posterior if the training
datasets ∪tDt,i are compressed. In detail, the theorem allows
us to summarize the data by simply keeping set of distinct
training points Pt,i ⊂ X# the number of times mt,i(x)
that each point x ∈ Pt,i has been observed up to time t
and the average of the measured TSDF values ḡt,i(x) :=

1
mt,i(x)

∑mt,i(x)
τ=1 gτ,i(x) at the observed points. Assuming

same noise variance σ2 at all primary observations, the pre-
cision matrix in Prop. 1 is Ωt,i = (σ2diag(mt,i(Pt,i))−1 +
k0,i(Pt,i,Pt,i))−1. Given these statistics, the mean functions
µt,i(x) and covariance functions kt,i(x,x′) of the GP distri-
butions of fi(x) can be obtained at any time t from Prop. 1.

µt,i(x) = µ0(x) + k0(x,Pt,i)Ωt,i(ḡt,i(Pt,i)− µ0(Pt,i)),
kt,i(x,x

′) = k0(x,x′)− k0(x,Pt,i)Ωt,ik0(Pt,i,x′),
(9)

We discuss the implementation details of online training and
prediction next.

1) Online GP Training: For each class i ∈ {1, . . . , N},
we keep two hashmap data structures over X# to represent
the number of observations mt,i(x) and the average TSDF
values ḡt,i(x). Given the sensor data Dt+1,i at time t + 1,
we update the hashmaps for each (x, g) ∈ Dt+1,i as:

mt+1,i(x) = mt,i(x) + 1

ḡt+1,i(x) = ḡt,i(x) +
1

mt+1,i(x)
(g − ḡt,i(x))

(10)

2) Online GP Prediction: If we need the online prediction
we should keep track of Ωt,i, otherwise ΩT,i is sufficient.
At time step t+ 1, in order to achieve Ωt+1,i from Ωt,i, we
have two kind of new observation in Dt+1,i. We either have
seen some of training points in Pt,i again, let call them P̃,
or we have seen new training points P′ = Pt+1,i \Pt,i. First
we update precision matrix regarding the first kind, let Ω′j
be the updated precision matrix until j elements of P̃. Let
x be the j + 1-th element of P̃ in order to update precision
matrix regarding x and achieving Ω′j+1 from Ω′j , let δ =

mt+1,i(x)−mt,i(x), ε = σ2

mt+1,i(x)
− σ2

mt,i(x)
, and l to be the

index of Ωt,i corresponding with x:

Ω′j+1 = (Ω′j
−1

+ δele
>
l)−1 = Ω′j −

(Ω′jej)
>Ω′jej

1
ε + e>j Ω′jej

(11)

3) Batch GP Prediction: Let Ω′ = Ω′|P̃|, then if we update
precision matrix Ω′ with second kind of new observation
we will have Ωt+1,i, let Σ′ = σ2diag(mt+1,i(P

′))−1 +
k0,i(P

′,P′),K = k0,i(Pt,i,P
′),C = Ω′K,E = (Σ′ −

K>C)−1,F = −CE then:

Ωt+1,i =

[
Ω′
−1

K
KT Σ′

]−1
=

[
Ω′ − FCT F

FT E

]
(12)

C. Semantic Class Prediction

In this section, we discuss how to predict the semantic
class labels on the surfaces of the implicitly estimated object
sets Oi. While we did not explicitly model noise in the
class observations in (2), in practice, semantic segmentation
algorithms may produce incorrect pixel-level classification.
This may lead to some sensor observations λt,j , ct,j being
incorrectly included into the training set Dt,i of a different
object class. This happens, for example, if objects from
two different classes, say i1 and i2, are spatially close
to each other and, in an RGB image observation, parts
of the boundary of one are classified as belonging to the
other class. Over time, with multiple sensor observations,
the TSDF approximations for both classes i1 and i2 may
contain training points x ∈ X# with small TSDF values,
indicating an object class surface. In order to predict the
correct object class when such as situation happens, we
compare the likelihoods of the different classes at surface
points given the posterior TSDF distributions of the functions
fi(x). In detail, consider a surface point, i.e., x ∈ X such
that fi(x) = 0 for some class i. The likelihood that the class
label of x is c ∈ {1, . . . , N} is provided below.

Nb

root

W

Ng

δ W
2`(N

r)

Nr

Fig. 3: Illustration of the octree data structure in two dimensions.
For three nodes Nr, Ng, Nb, the regions for their S(·), T (·) are
respectively filled and dashed with red, green, blue colors. For all
nodes Max(N) = 1, so node Ng splits. Note that there is no train-
ing point in the filled green region (T (Ng)), but two training points
observed in S(Ng). Additionally Nr ∈ children(Ng), `(Nr) =

2. We see the cyan training point is in both PNb

t,c ,P
Nr

t,c .

Proposition 2. Let GP(µt,i(x), kt,i(x,x
′)) be the distribu-

tions of the signed depth functions fi(x) at time t, determined
according to (9). Consider an arbitrary point x ∈ X on the
surface of the obstacle set O, i.e., x is such that fi(x) = 0
for some class i ∈ {1, . . . , N}. Then, the probability that the
true class label of x is c ∈ {1, . . . , N} is:

P
(

arg min
i
|fi(x)| = c

∣∣∣∣ min
i
|fi(x)| = 0

)
=

1
σt,c(x)

φ(
µt,c(x)
σt,c(x)

)∑
i

1
σt,i(x)

φ(
µt,i(x)
σt,i(x)

)
,

where φ(·) is the density of the standard normal distribution
and σt,i(x) :=

√
kt,i(x,x).

Proof. See Appendix B.

The class distribution for an arbitrary point, not lying on
an object surface, may also be obtained, as shown in the
proof of Prop. 2, but is both less efficient to compute and
rarely needed in practice.

V. OCTREE OF GAUSSIAN PROCESSES

We propose octree data structure with overlapping blocks.
It both mitigates discontinuities, and facilitates finding cor-
responding block for test prediction, since at each node a GP
of the training points is in charge of prediction.

An octree of training points is a tree data structure such
that each internal node has eight children, and recursively
subdivided into octants based on their number of training
points in order to partition a W -length side cube out of
environment. Each node N of the octree with point ctr(N)
as center of its cube has following specifications:

1) `(N): level of node N in the tree is `(N) ≥ 0. In level
zero there is one node which is the root of the tree.

2) S(N) := {x ∈ X | ‖x − ctr(N)‖∞ ≤ δ W
2`(N)+1 } is

support of node N . Set of points in the X# that are
potent to be assigned to this node as observed training
points is S(N)∩X#. Node N splits into eight children
if number of observed training points in its support
exceeds Max(N).(δ > 1)

Fig. 4: On the first row, from left first two are ground truth of
environment and TSDF of the blue class, the third is constructed
TSDF with frame size = 10. On the second row constructed
boundaries for different frame size = 10, 3, 2. The sharp edges
are captured better in frame size 3 vs. 10, but using frame size
less that 3 caused missing some parts of the boundaries.

3) T (N) := {x ∈ X | ‖x − ctr(N)‖∞ ≤ W
2`(N)+1 },

prediction for test points in this region is evaluated by
Gaussian Process trained by observed training points in
S(N).

4) children(N): It is empty if N is a leaf in the oc-
tree, otherwise is a set of eight nodes with their cen-
ters in {ctr(N) + sxe1 + sye2 + sze3|sx, sy, sz ∈
{+ W

2`(N)+1 ,− W
2Nlvl+1 }}. Their level is `(N) + 1.

GP in each node will be calculated with observed training
points in S(N). At time step t, for class i, let’s show
observed training points in node N, with PNt,i = Pt,i∩S(N).
The other GP variables like ΩN

t,i are defined accordingly.

VI. EVALUATION

In this section, we apply our method to a 2-D simula-
tion, compare its performance to the incremental Euclidean
signed distance mapping method Fiesta [12] on the Cow
and Lady dataset [11], and demonstrate its 3-D semantic
reconstruction performance on the SceneNN dataset [26]. In
all experiments, sparse Matérn kernel (v = 3/2) [23] is used.

A. 2-D Simulation

In this section, we generate a random 2-D environment
(see Fig. 4), obtain random observations using a simulated
depth-class sensor, and then apply our method to obtain a
map. Then we compare it with the ground truth.

1) TSDF Accuracy: A sample of 2-D simulation with
its TSDF and boundaries (ground truth and constructed) is
shown in Fig. 4. Truncation value of TSDF is very dependent
on the frame size. Larger frame size allows estimating
larger truncation value, but incurs additional computational
cost. Our method provides continuous TSDF. In order to
evaluate our method’s precision in estimating TSDF and its
resistance against noise, all points within truncation value out
of the grid with its voxel size to be half of the voxel size
of the X# are picked as test points, the result is shown in
up right of Fig. 5.

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

Class error probability

var = 0

var = 0.2

var = 0.4

var = 0.6

var = 0.8

var = 1

Misclassification Rate

Precision

Recall

Normalized SDF Error

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

·10−2

Noise variance

SDF error

Fig. 5: On left Misclassification Rate, Precision, Recall, Normalized
SDF Error are plotted for different class error probability and vari-
ances of noise on rays. On up right SDF error with voxel size =
0.1, Max(N) = 100, δ = 1.2. The errors are average of errors over
10 random maps, and in each we have 100 random observations.

2) Classification Accuracy: In each map we pick random
points out of boundaries, we calculate the error in signed
distance field and accuracy of class detection. For each class
we calculate the precision, and recall, since every thing is
symmetric for both classes red and blue, we present the
average over two classes as precision and recall. In the Fig. 5
we produce 50 random maps and take average of mentioned
variables over all maps. As we see in all curves, they are
not very sensitive to class error probability. In the Fig. 6 we
investigate the effect of the parameters of our algorithm on
measures Misclassification Rate i.e. the ratio of samples with
wrong detected class, Normalized SDF Error= SDF error

voxel size in
which SDF error is average of absolute value of difference
between estimated signed distance value and the real signed
distance value, FDR = 1 − Precision, FNR = 1 − Recall.
We see in all figures Misclassification Rate, FDR, and FNR
behave closely. Increasing Max(N) improves Normalized
SDF Error. At first the improvement is considerable, but
then even with exponential increase in Max(N), Normalized
SDF Error does not change significantly. Class measures
at first slightly improves. Increasing δ also have similar
effect on all the measures. Increasing Gaussian Process
noise variance at first improves all the measures, then it
worsen them. Its wrong chosen value is very crucial to
misclassification rate, but it changes very smoothly, i.e. if
the value is in the right region, its exact optimum value does
not matter.

B. Cow and Lady Dataset

In this section, we investigate the performance of our
method on the cow and lady dataset, and compare it to
Fiesta which builds ESDF map incrementally for voxels, by
updating the effect of observed obstacles in two independent
queues, for inserting and deleting them. Increasing Max(N)
improves SDF error which is significant at first, but then
improvement is not considerable. The time at first decreases,
because the number of leaves decreases, then it increases,
since the Gaussian Process kernel matrix gets bigger. Increas-
ing δ improves the SDF error, but not significantly. Although,

100.6 101.2 101.81 102.41 103.01
10−2

10−1

100

Feature points’ number in each leaf (Max(N))

1 1.2 1.4 1.6 1.8 2

Over lap ratio of tree’s leaves (δ)

0 0.5 1 1.5 2

10−1

100

Gaussian Process noise variance
5 · 10−2 0.1 0.15 0.2 0.25 0.3

Voxel size

Misclassification Rate Normalized SDF Error FDR FNR

Fig. 6: The default values are δ = 1.5, Max(N) = 100, Gaussian
Process noise variance = 1, voxel size = 0.1. The class error
probability is 0.05 and the variance noise of the rays is 0.5. The
test points are out of boundaries consecutive average distance 0.05.
The measures are from 100 random observations in each map, then
getting average over 50 random maps, and classes.

it will increase time significantly. Increasing the Gaussian
Process noise variance improves the SDF error at first, then
it worsen it, and it does not have meaningful effect on the
time. When it is very close to zero, its value is very effective
on the SDF error. In Fig. 7 we can see our method improved
the error of Fiesta significantly, when the voxel size varies.
Fiesta’s parameters are set as their default.

C. SceneNN Dataset

For the 3D reconstruction with classification evaluation
of our method we apply it to dataset SceneNN [26]. In
this part we evaluate on the test grid with twice resolution
than X#, then we consider the points out of new grid with
confidence more than some threshold. Then we take the mesh
of zero value to be the surface. For the classification we use
Prop. 2. We can see the effect of different parameters on the
performance in the Fig. 8. Increasing Max(N) improves
both classification and signed distance field. The improve-
ment after 100 is negligible, but time increases significantly.
Increasing δ will improve specifically the TSDF, since the
shape representation improves, but after 1.4 the improvement
is negligible. As we have seen in the 2D simulation, choosing
wrong value of Gaussian Process variance is crucial to both
TSDF and the classification, but it is not sensitive to the
optimal value.

VII. CONCLUSION

This paper developed a Bayesian inference method for
online probabilistic metric-semantic mapping via scalable
Gaussian Processes regression of semantic class signed dis-
tance functions. Our method offers a promising direction
for semantic task specifications and uncertainty-aware task

10 100 200 400 600 800
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

Feature points’ number in each leaf (Max(N))

(m
)

10 100 200 400 600 800 1 1.2 1.4 1.6 1.8 2

Over lap ratio of each leaf (δ)
1 1.2 1.4 1.6 1.8 2

350

400

450

500

(s
ec

)

0 5 10 25 40 50 80
0

5 · 10−2

0.1

0.15

0.2

0.25

Gaussian Process noise variance

(m
)

0 5 10 25 40 50 80 5 · 10−2 0.1 0.2

Voxel size
5 · 10−2 0.1 0.2

300

400

500

600

700

(s
ec

)

Time (sec) Error (m) Fiesta Error (m)

Fig. 7: Training is done with 829 depth images, and their syn-
chronized pose out of Cow and Lady dataset. The left and right
axises determine the SDF error (m), and time(seconds). The default
parameters for our algorithm is Max(N) = 200, δ = 1.5, Gaussian
Process noise variance = 25, voxel size = 0.1, frame size = 5,
and truncation value is 3× voxel size.

planning. Future work will focus on improving the inference
speed and precision by considering alternative implicit func-
tions and incorporating probabilistic representation of other
environment characteristics such as texture and temperature.

APPENDIX A PROOF OF PROP. 1

Without loss of generality, assume µ0(x) = 0. The
general result can be concluded by change of variables
f(x) − µ0(x). Let X∗ be an arbitrary finite set of query
points, and f∗ be the vector of evaluations of f over X∗.
To prove the posterior GPs are identical, regardless of which
dataset is used for training, we will show that the Gaussian
distribution of f∗ conditioned on either dataset is the same.
Let f := f(X), f̂ = [f>, f>∗]>, ζ = [y1,1, ..., yn,mn

]>,
and D ∈ R

∑n
j=1mj×

∑n
j=1mj be a diagonal matrix such

that D∑i−1
k=0mk+j,

∑i−1
k=0mk+j

= 1
σ2
i

for j = 1, ...,mi. Our
approach is to calculate p(f∗, f |ζ) from the joint distribution
p(f∗, f , ζ) for the first dataset. Then, if we repeat the process
for the second data set, calculating p(f∗, f |ζ̂), we end up with
the same normal distribution. If the marginal of f∗ is obtained
by integrating out f , the distributions p(f∗|ζ), and p(f∗|ζ̂)
remain the same. From conditional probability and since ζ
depends on f only, we have p(f∗, f , ζ) = p(ζ|f)p(f∗, f). Let
z = [ζ>, f̂>]>, ẑ> = [ζ̂

>
, f̂>]>. The log likelihood of z is:

log p(z) ∝
n∑
i=1

mi∑
j=1

−1

2

(yi,j − f(xi))
2

σ2
i

− 1

2
f̂>Ωf̂ , (13)

where
[
k0(X,X) k0(X,X∗)
k0(X∗, X) k0(X∗, X∗)

]−1
=

[
Ω11 Ω12

Ω>12 Ω22

]
= Ω.

For the first dataset, let H be a matrix with elements
Hi,(

∑i−1
k=0mk+j)

= −1
σ2
i

for i = 1, . . . , n and j = 1, . . . ,mi

with zero at the rest of its entries. Similarly, for the second

dataset, let Ĥ to be a matrix with elements Ĥi,i = −mi

σ2
i

for
i = 1, ..., n and zero elsewhere. Rewrite (13):

log p(z) ∝ −1

2
z>Ωjntz (14)

Ωjnt :=

D−1 H> 0
H diag(H1) + Ω11 Ω12

0 Ω>12 Ω22

 =

[
D−1 G>

G Ωcnd

]
,

where 1 is a vector of ones. This means z ∼ N (0,Ω−1jnt),
and hence f̂ |ζ ∼ N (−Ω−1cndGζ,Ω−1cnd). Similarly for sec-

ond dataset, define Ω̂jnt :=

[
D̂−1 Ĝ>

Ĝ Ω̂cnd

]
, where Ĝ :=

[Ĥ>,0]> and Ω̂cnd is defined by adding diag(Ĥ1) to the
top left block of Ω. Again, ẑ ∼ N (0, Ω̂

−1
jnt), so we can

conclude f̂ |ζ̂ ∼ N (−Ω̂
−1
cndĜζ̂, Ω̂

−1
cnd). The equivalence of

the covariance matrices and means of these two normal
distributions follows from Ĥ1 = H1 and Ĥζ̂ = Hζ.

APPENDIX B PROOF OF PROP. 2

Let lc(z) := P
(

arg min
i
|fi(x)| = c and mini |fi(x)| ≤ |z|

)
.

Since P (mini |fi(x)| ≤ |z|) =
∑
i li(z):

P
(

arg min
i
|fi(x)| = c

∣∣∣∣ min
i
|fi(x)| ≤ |z|

)
=

lc(z)∑
i li(z)

The term we are interested in computing is limz→0
lc(z)∑
i li(z)

.
Let x be an arbitrary (test) point and define µi := µt,i(x) and
σi := σt,i(x) for i = 1, . . . , N . The GP prior of fi stipulates
that its value at x has a density function p(t) = 1

σi
φ
(
t−µi

σi

)
.

Hence, P(|fi(x)| ≥ t) = 1 − Φ(|t|−µi

σi
) + Φ(−|t|−µi

σi
).

Note that lc(z) corresponds to the probability that |fc(x)| ≤
|fi(x)| for all i. Since all fi are independent of each other:

lc(z) =

∫ z

−z

φ
(
t−µc

σc

)
σc

∏
i 6=c

(
1− Φ

(|t| − µi
σi

)
+ Φ

(−|t| − µi
σi

))
dt

The claim is concluded by lim
z→0

lc(z)
2z = 1

σc
φ
(−µc

σc

)
.

REFERENCES

[1] A. Elfes, “Using occupancy grids for mobile robot perception and
navigation,” Computer, vol. 22, no. 6, pp. 46–57, 1989.

[2] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “OctoMap: An efficient probabilistic 3D mapping framework
based on octrees,” Autonomous Robots, vol. 34, no. 3, 2013.

[3] R. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. Davi-
son, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon, “KinectFusion:
Real-Time Dense Surface Mapping and Tracking,” in IEEE Int.
Symposium on Mixed and Augmented Reality, 2011, pp. 127–136.

[4] L. Teixeira and M. Chli, “Real-time mesh-based scene estimation for
aerial inspection,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2016, pp. 4863–4869.

[5] E. Piazza, A. Romanoni, and M. Matteucci, “Real-time cpu-based
large-scale three-dimensional mesh reconstruction,” IEEE Robotics
and Automation Letters, vol. 3, no. 3, pp. 1584–1591, 2018.

[6] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “Rgb-d
mapping: Using kinect-style depth cameras for dense 3d modeling of
indoor environments,” The International Journal of Robotics Research,
vol. 31, no. 5, pp. 647–663, 2012.

[7] T. Whelan, R. F. Salas-Moreno, B. Glocker, A. J. Davison, and
S. Leutenegger, “Elasticfusion: Real-time dense slam and light source
estimation,” The International Journal of Robotics Research, vol. 35,
no. 14, pp. 1697–1716, 2016.

(a) n : 5,t : 58.15 (b) δ : 1, t : 32.62 (c) σ2 : 0, t : 42.43 (d) v : 0.06, t : 23.24

(e) n : 100,t : 45.15 (f) δ : 1.4, t : 39.11 (g) σ2 : 10, t : 41.07 (h) v : 0.03, t : 45.15

(i) n : 1000,t : 96.83 (j) δ : 2, t : 57.41 (k) σ2 : 40, t : 43.76 (l) v : 0.01, t : 381.02

Fig. 8: The default parameters are δ = 1.5, Max(N)(n) = 100, Gaussian Process noise variance (σ2) = 3, voxel size(v) = 0.03,
frame size = 1.On the right we see the change of parameters over 140 RGBD images (t is time in seconds). Left up is the final
reconstruction out of 2450 RGBD images. Number of classes detected is 85 classes. This reconstruction took 1040.41 seconds. Left
down is the final reconstruction out of 3700 RGBD images. Number of classes detected is 61 classes. This reconstruction took 1885.72
seconds. On the right we see the change of parameters over 140 RGBD images.

Fig. 9: Reconstruction of the Cow and Lady dataset. Red hues
indicate lower TSDF uncertainty.

[8] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-scale direct
monocular SLAM,” in European Conf. on Computer Vision, 2014.

[9] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruc-
tion,” in Eurographics Symposium on Geometry Processing, 2006.

[10] B. Curless and M. Levoy, “A volumetric method for building complex
models from range images,” 1996.

[11] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto,
“Voxblox: Incremental 3d euclidean signed distance fields for on-
board mav planning,” in IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, 2017.

[12] L. Han, F. Gao, B. Zhou, and S. Shen, “Fiesta: Fast incremental
euclidean distance fields for online motion planning of aerial robots,”
in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2019.

[13] J. McCormac, A. Handa, A. Davison, and S. Leutenegger, “Se-
manticfusion: Dense 3d semantic mapping with convolutional neural
networks,” in 2017 IEEE International Conference on Robotics and
automation (ICRA). IEEE, 2017, pp. 4628–4635.

[14] A. Hermans, G. Floros, and B. Leibe, “Dense 3D Semantic Mapping
of Indoor Scenes from RGB-D Images,” in IEEE International Con-
ference on Robotics and Automation (ICRA), 2014, pp. 2631–2638.

[15] A. Kundu, Y. Li, F. Dellaert, F. Li, and J. M. Rehg, “Joint semantic
segmentation and 3d reconstruction from monocular video,” in Euro-
pean Conference on Computer Vision. Springer, 2014, pp. 703–718.

[16] M. Jadidi, L. Gan, S. Parkison, J. Li, and R. Eustice, “Gaussian
Processes Semantic Map Representation,” arXiv:1707.01532, 2017.

[17] M. G. Jadidi, J. V. Miró, R. Valencia, and J. Andrade-Cetto, “Explo-
ration on Continuous Gaussian Process Frontier Maps,” in IEEE Int.
Conf. on Robotics and Automation (ICRA), 2014, pp. 6077–6082.

[18] S. Kim and J. Kim, “Occupancy mapping and surface reconstruction
using local Gaussian processes with kinect sensors,” IEEE Trans. on
Cybernetics, vol. 43, no. 5, pp. 1335–1346, 2013.

[19] S. O’Callaghan and F. Ramos, “Gaussian process occupancy maps,”
International Journal of Robotics Research, vol. 31, no. 1, 2012.

[20] A. Koppel, “Consistent online Gaussian Process regression without
the sample complexity bottleneck,” in American Control Conference
(ACC), 2019, pp. 3512–3518.

[21] A. Koppel, A. S. Bedi, K. Rajawat, and B. M. Sadler, “Optimally
compressed nonparametric online learning,” IEEE Signal Processing
Magazine, 2020.

[22] V. Tresp, “A bayesian committee machine,” Neural computation,
vol. 12, no. 11, pp. 2719–2741, 2000.

[23] S. Kim and J. Kim, “Recursive bayesian updates for occupancy
mapping and surface reconstruction,” in Australasian Conference on
Robotics and Automation, 2014.

[24] C. E. Rasmussen and Z. Ghahramani, “Infinite mixtures of gaussian
process experts,” in Advances in neural information processing sys-
tems, 2002, pp. 881–888.

[25] A. Milioto and C. Stachniss, “Bonnet: An Open-Source Training and
Deployment Framework for Semantic Segmentation in Robotics using
CNNs,” in IEEE Intl. Conf. on Robotics & Automation (ICRA), 2019.

[26] B.-S. Hua, Q.-H. Pham, D. T. Nguyen, M.-K. Tran, L.-F. Yu, and
S.-K. Yeung, “Scenenn: A scene meshes dataset with annotations,” in
International Conference on 3D Vision (3DV), 2016.

	Introduction
	Problem Formulation
	Gaussian Process Regression Background
	Probabilistic Metric-Semantic Mapping
	Training Set Construction
	Gaussian Process Regression
	Online GP Training
	Online GP Prediction
	Batch GP Prediction

	Semantic Class Prediction

	Octree of Gaussian Processes
	Evaluation
	2-D Simulation
	TSDF Accuracy
	Classification Accuracy

	Cow and Lady Dataset
	SceneNN Dataset

	Conclusion
	Appendix Proof of Prop. 1
	Appendix Proof of Prop. 2
	Appendix References

