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Abstract— Broader decision-making goals such as risk-
sensitivity, exploration, and incorporating prior experience
motivates the study of cooperative multi-agent reinforcement
learning (MARL) problems where the objective is any nonlin-
ear function of the team’s long-term state-action occupancy
measure, i.e., a general utility, which subsumes the afore-
mentioned goals. Existing decentralized actor-critic algorithms
to solve this problem require extensive message passing per
policy update, which may be impractical. Thus, we put forth
Communication-Efficient Decentralized Shadow Reward Actor-
Critic (CE-DSAC) that may operate with time-varying or
event-triggered network connectivities. This scheme operates
by having agents to alternate between policy evaluation (critic),
weighted averaging with neighbors (information mixing), and
local gradient updates for their policy parameters (actor). CE-
DSAC is different from the usual critic update in its local
occupancy measure estimation step which is needed to estimate
the derivative of the local utility with respect to their occupancy
measure, i.e., the “shadow reward,” and the amount of local
weighted averaging steps executed by agents. This scheme
improves existing tradeoffs between communications and con-
vergence: to obtain ε-stationarity, we require in O(1/ε2.5)
(Theorem IV.6) or faster O(1/ε2) (Corollary IV.8) steps with
high probability. Experiments demonstrate the merits of this
approach for multiple RL agents solving cooperative navigation
tasks with intermittent communications.

I. INTRODUCTION

In reinforcement learning (RL), an autonomous agent
starting from one state, repeatedly selects actions which
trigger state transitions according to a Markov transition
density, whereby instantaneous rewards are revealed by the
environment. This setting, associated with a Markov Decision
Process (MDP) [1], is different from optimal control [2]
in that access to a system model that governs the state
evolution is unavailable. Instead, one seeks to directly estimate
parameters of a distribution over actions, i.e., policy [3]. The
standard goal is to find the policy associated with maximizing
the cumulative return in the long-run. This framework has
gained traction in recent years in settings where first-principles
models are unavailable or intractably complicated, as in vision-
based robotic manipulation [4], web services [5], and logistics
[6], and games [7].

This work focuses on team settings: a collection of RL
agents interact to effect aggregate outcomes. We concentrate
on the case where agents cooperate [8], as in autonomous
vehicular networks [9], games [7], and various other settings.
Cooperation in multi-agent RL (MARL) may be contrasted
with competitive or mixed settings [10], and necessitates
an incentive for teamwork. Conventionally, this incentive is
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encoded by defining the reward of the team as the global sum
of agents’ individual rewards [11]. Instead, we study a more
general setting in which agents’ utilities are any nonlinear
function of the global state-action occupancy measure, i.e.,
a general utility. This specification is motivated by the
fact that making modern RL effective in practice often
requires reasoning about exploration [12], risk and safety
[13], constraints [14], prior experience [15], all of which may
be defined as nonlinear functions of the occupancy measure
[16], whereas the standard cumulative return (value function)
is necessarily linear.

To approach algorithms for MARL with general utilities, a
critical observation is that the foundation of most centralized
RL techniques, i.e., the classical Policy Gradient Theorem
[17] or Bellman’s equations, break down. Generalizations
of the PG Theorem for general utilities [18] which express
the gradient as product of the partial derivative of the utility
respect to the occupancy measure, and the occupancy measure
with respect to the policy, cannot overcome the fact that the
later factor is a global nonlinear function of agents’ policies,
which does not permit decentralization. Therefore, in recent
work, we define an agent’s local occupancy measure as the
joint occupancy measure of all agents’ polices with all others’
marginalized out, and its local general utility as any function
of its marginal occupancy measure. The team objective, then,
is the global aggregation of all local utilities.

Armed with this definition, we previously put forth
Decentralized Shadow Reward Actor-Critic (DSAC) for
MARL with general utilities, and established its consistency
and sample complexity [19]. This algorithm may be inter-
preted as a generalization of classical actor-critic algorithms
for the multi-agent setting in [8], which are restricted to
the cumulative return. It operates in four stages for each
agent: (i) a marginalized occupancy measure estimation step
used to evaluate the instantaneous gradient of the local
utility with respect to the occupancy measure, which we
dub the “shadow reward” (shadow reward computation);
(ii) accumulate “shadow rewards” along a trajectory to
estimate “shadow” critic parameters (critic); (iii) average
critic parameters with those of its neighbors (information
mixing); and (iv) a stochastic policy gradient ascent step
along trajectories (actor).

Unfortunately, DSAC requires significant communications
overhead between agents in order to operate: agents need
to communicate shadow critic parameter estimates possibly
multiple times for every policy update, depending on the
desired convergence rate. This is a drawback common to
classical techniques for multi-agent optimization: a weighted
averaging step is conventionally employed in order to diffuse
information between agents across time while optimizing



local utilities [20], inspired by flocking [21] and gossip
protocols [22]. We note that alternatives based upon Lagrange
multipliers [23] may more effectively enforce consensus, but
primal-only approaches are simpler and directly compatible
with Perron-Frobenius theory [24], which set forth conditions
on the network mixing matrices to ensure consensus.

Communications Efficiency: In this work, we enhance
the communications efficiency of DSAC under two different
models of message passing: a deterministic time-varying
network model [20], and an event triggering scheme [25],
where agents only communicate when their local shadow critic
parameter estimates change more than a threshold. The result,
Communications Efficient DSAC (CE-DSAC), broadens
recent efforts toward communication-efficient MARL from the
cumulative return (see [26]) to general utilities. In particular,
we establish convergence to stationarity for both time-varying
(Theorem IV.6) and event-triggered communications (Theo-
rem IV.9) which, implies global optimality when the general
utility is concave. Experimentally, we observe a favorable
tradeoff between communications and policy learning for a
cooperative multi-agent navigation problem.

II. PROBLEM FORMULATION

In this work, we focus on Markov decision processes
(MDP) over a finite state space S and finite action space
A. A transition to state s′ ∈ S when starting from s ∈ S
occurs upon selecting action a ∈ A according to a conditional
probability distribution s′ ∼ P(·|a, s), for which we define
the short-hand notation Pa(s, s′). Denote as ξ the initial
state distribution of the MDP, i.e., s0 ∼ ξ. We further
denote S := |S| and A := |A| as the number of states and
actions. Consider policy optimization for maximizing general
objectives that are nonlinear function of the cumulative
discounted state-action occupancy measure under policy π
[18], [27]:

max
π

R(π) := F (λπ) (1)

where F is a general (not necessarily concave) functional
and λπ is aforementioned occupancy measure given by

λπ(s, a)=

∞∑
t=0

γtP
(
st=s, at=a

∣∣∣π,s0∼ξ), ∀(s, a)∈S×A (2)

In this work, we consider a multi-agent extension of the
problem in (1), where the state space S , the action space A,
the policy π, and the general utility F are decentralized among
N = |V| distinct agents. Agents are defined by a time varying
undirected graph Gk = (V, Ek) with vertex set V and edge set
Ek for each step k. In this case, the state space is the product
of N local spaces Si, i.e., S = S1 × S2 × · · · × SN with
s = (s(1), s(2), · · · , s(N)) and s(i) ∈ Si, i ∈ V . Similarly,
the action space A is the product of N local spaces Ai:
A = A1 ×A2 × · · · × AN , meaning that for any a ∈ A, we
may write a = (a(1), a(2), · · · , a(N)) with a(i) ∈ Ai, i ∈ V .
Each agent has access to the global state s, as customary of
joint-action learners training in a decentralized manner under
full observability [8], [28]–[31]. Full observability means
each agent i may access global actions a concatenating all
local ones.

We assume the network of agents follows global pol-
icy π(a|s) that maps global action a for a given global
state s, which defined as the product of local policies∏N
i=1 π

(i)(a(i)|s), which prescribes statistical independence
among agents’ policies. For the parameterized policy πθ(a|s)
where θ ∈ Θ, we denote θ = (θ1, θ2, · · · , θN ) as the
parameter, so we can write πθ(a|s) =

∏
i∈V π

(i)
θi

(a(i)|s),
where the local policy of agent i is parameterized by θi.
Since the global state is visible to all agents, the local policy
is based on the observation of the global state. The parameters
θi are kept private by agent i.

Similar to the global occupancy measure λπ(s, a) [cf. (2)],
we define the local cumulative state-action:

λπ(i)(s(i),a(i))=

∞∑
t=0

γt ·P
(
st(i) =s(i),a

t
(i) =a(i)

∣∣∣π,s0∼ξ) (3)

for ∀a(i) ∈ Ai, s(i) ∈ Si, which is the marginalization of the
global occupancy measure with respect to all others’, whose
indices are denoted as {−i} ⊂ V . Marginalization allows us
to write

λπ(i)(s(i), a(i)) =
∑

a∈{a(i)}×A−i

∑
s∈{s(i)}×S−i

λπ(s, a) (4)

with A−i=Πj 6=iAj and S−i=Πj 6=iSj . The local state-action
occupancy measure is a linear transform of λπ in (2).

Let Si = |Si| denote the number of local states and Ai :=
|Ai| the number of local actions. For agent i, define the local
utility function Fi(·) : RSiAi 7→ R as a function of λπ(i),
depends on θi when agent i follows policy πθi . Then, define
the global utility as the sum of local ones:

R(πθ) = F (λπθ ) :=
1

N

N∑
i=1

Fi
(
λπθ(i)
)
. (5)

Observe that the local utility of agent i is not node-separable
with respect to policy parameters θi due to the dependence
of the local occupancy measure (4) on the global policy π.
This is a key point of departure from standard multi-agent
optimization [20]: the global utility (5) is not node-separable.
Next we shift to deriving a variant of actor-critic attuned
to the multi-agent setting with general utilities (5) which
operates upon the principle of partial linearization [32].

III. ELEMENTS OF MARL WITH GENERAL UTILITIES

We develop an actor-critic type algorithm for MARL with
general utilities (5). Technical challenges emerge as the
occupancy measure, the policy parameters, and the utility
are coupled. That is, the general utility, in contrast to the
standard value function, is not additive across trajectories,
which invalidates RL approaches based upon either the Policy
Gradient Theorem [17] or Bellman’s equations [1].

We chart a course through these issues based upon a
combination of the chain rule, a density estimation step,
and the construction of a “shadow reward.” The result is a
MARL scheme in which the critic step operates through an
occupancy measure estimation step, a policy evaluation step
with respect to the “shadow value function” (critic). Then
the actor update is a typical stochastic ascent step. Further,
in the critic update, agents compute local weighted averages



to diffuse information across the team. To proceed, we begin
by defining the shadow reward and value function.

A. Shadow Rewards and Policy Evaluation
As previously mentioned, the general utility (1) cannot

be written as cumulative sum of returns, which is critical
to the original definition of the reward function and Q
function in dynamic programming [1] or policy search [17].
To circumvent the need for additivity, we introduce auxiliary
variables called shadow rewards and shadow Q functions.

Definition III.1 (Shadow Reward and Shadow Q Function).
The shadow reward function rπ : S ×A 7→ R of a policy π
corresponding to a general utility F is rπ(s, a) := ∂F (λπ)

∂λ(s,a) ,
and its associated shadow Q function is

QπF (s, a) := E
[+∞∑
t=0

γt · rπ(st, at)
∣∣ s0 = s, a0 = a, π

]
.

For the shadow Q function and the occupancy measure,
we assume they are smooth respect to policy parameters.

Assumption III.2. ∃`Q, `λ > 0 s.t. for ∀(s, a) ∈ S × A,
∀θ, θ′, it holds that |QπθF (s, a) − Qπθ′F (s, a)| ≤ `Q‖θ − θ′‖,
and |λπθ (s, a)− λπθ′ (s, a)| ≤ `λ‖θ − θ′‖.

These definitions may be understood by considering the
linearization of general utility F with respect to λπ, which,
via the chain rule, is equivalent to a MDP with cumulative
return, with the shadow reward and Q function in place of
the usual the reward and Q functions:

∇θF (λπθ)=E

[
+∞∑
t=0

γt·QπF (st,at)·∇θlog πθ(a
t|st)

∣∣s0∼ξ,π]. (6)

This expression for the policy gradient illuminates the
centrality of the shadow reward/value function for nonlinear
functions of the occupancy measure (2), which motivates the
generalized policy evaluation scheme we present next.

B. Policy Evaluation Criterion for Shadow Q Function
We seek to compute the Shadow Q-function from trajectory

information to form the target value for the parameters of a
critic. We consider the case that the critic is parameterized.
One simple choice is linear function approximation, i.e., with
a set of feature vectors {φ(s, a) ∈ Rd : s ∈ S, a ∈ A}, we
want to find some weight parameter w ∈ Rd so that

Qw(s, a) := 〈φ(s, a), w〉 ∀(s, a) ∈ S ×A. (7)

In our algorithm, we will update a sequence of ŵ to closely
approximate the sequence of implicit shadow Q functions, as
the policy is updated. In practice, the parametrization (7) need
not be linear – in Section V, we define Q as a multi-layer
neural network.

Thus, the critic objective at policy π may be defined as the
mean-square-error of a regressor w.r.t. shadow Q-function:

`(w;π):=E
[ ∞∑
t=0

γt

2

(
Qw(st, at)−QπF (st, at)

)2 ∣∣s0∼ξ, π]
=

1

2

∑
s,a

λπ(s, a)
(
φ(s, a)>w−QπF (s, a)

)2
. (8)

Via the definition of the occupancy measure λπ [cf. (2)], the
expectation may be substituted by weighting factors in the
summand on the second line. We assume the set of features
{φ(s, a)}s∈S,a∈A are always bounded, formalized next.

Assumption III.3. ∃Cφ > 0 s.t. ‖φ(s, a)‖ ≤ Cφ, ∀(s, a).

Through the boundedness of the features, which holds,
e..g, for radial basis functions or auto-encoders with bounded
range, we may establish critic objective function has Lipschitz
continuous gradients.

Proposition III.4. Regardless of policy πθ, the critic objec-
tive `(w;πθ) [cf. (8)] is Lw-smooth with Lw =

C2
φ

1−γ .

Proposition III.4 may be established by evaluating the
Hessian of the critic objective function (8): ∇2

w`(w;πθ) =∑
s,a λ

πθ (s, a) · φ(s, a)φ(s, a)>. Consequently, Lw ≤
‖∇2

w`(w;πθ)‖F ≤ C2
φ

1−γ . With the shadow reward and
associated Q-function (Definition III.1), the policy evaluation
criterion (8), and its smoothness properties (Proposition III.4)
with respect to the critic parameters w [cf. (7)] in place, we
expand on their role in the multi-agent setting.

C. Multi-Agent Optimization for Critic Estimation

Setting aside the issue of policy parameter updates, we
focus on estimating the global general utility. The shadow
Q-function and shadow reward (Definition III.1) depend on
global knowledge of all local utilities, which are unavailable
as local incentives are local only. Therefore, introduce their
localized components rπi for agent i, which together comprise
the global shadow Q-function and reward:

rπi (s(i),a(i)) :=
∂Fi(λ

π
(i))

∂λ(i)(s(i),a(i))
,∀(s(i),a(i)) ∈ Si×Ai (9)

Observe that rπ(s, a) = 1
N

∑N
i=1 r

π
i (s(i), a(i)). Based on

observing local shadow reward, agent i may access its local
component of the global shadow Q-function Q : S ×A → R:

Qπi (s, a) :=E

[
+∞∑
t=0

γt ·rπi
(
st(i), a

t
(i)

) ∣∣ s0 =s, a0 =a, π

]
(10)

for ∀(s, a) ∈ S × A, which also implies QπF (s, a) =
1
N

∑N
i=1Q

π
i (s, a). Then, each agent i seeks to estimate

common critic parameters w that well-represent its shadow Q
function in the sense of minimizing the global mean-square
error (8). The aforementioned node-separability, together wit
introducing a localized critic parameter vector wi associated
to agent i, allows us to formulate a consensus problem:

min
{wi}Ni=1

1

N

N∑
i=1

`i(wi;π) s.t. wi=wj , (i, j) ∈ E (11)

with local policy evaluation criterion

`i(wi;π):=E

[∞∑
t=0

γt

2

(
Qwi(s

t,at)−QπFi(s
t,at)
)2∣∣s0∼ξ, π]. (12)

By identifying the shadow critic estimation problem as a
consensus problem, we may develop solutions that allow



Algorithm 1: CE-DSAC Algorithm

1 Input: initial policy θ0; actor & critic step-sizes
{ηkθ , ηkw}; Batch sizes {Bk}; Episode lengths {Hk};
initial critic W 0 := [w0

1, w
0
2, ..., w

0
N ], w0

i = w0
j ; weight

matrices {Mk} ⊆ RN×N+ ; mixing rounds m ≥ 1.
2 for iteration k = 0, 1, 2, ... do
3 Perform Bk Monte Carlo rollouts to obtain

trajectories τ = {s0, a0, · · · , sHk , aHk} with initial
dist. ξ, policy πθk collected as batch Bk.

4 for agent i = 1, 2, ..., N do
5 Compute empirical local occupancy measure

λ̂ki =
1

Bk

∑
τ∈Bk

Hk∑
t=0

γt ·e
(
st(i), a

t
(i)

)
. (13)

Estimate shadow reward r̂ki = ∇λiFi(λ̂ki ).
6 for agent i = 1, 2, ..., N do
7 With Gwi(·) defined in (14), compute

∆̂k
wi=

1

Bk

∑
τ∈Bk

Gwi(τ, r̂
k
i,w

k
i ), wk+1

i =wki − ηkw∆̂k
wi .

8 for iter = 1, ...,m do
9 for agent i = 1, 2, ..., N do

10 Exchange information with neighbours:
wk+1
i =

∑
{j:(j,i)∈E}Mk(j, i) · wk+1

i .

11 With Gθi(·) defined in (15), update the policy:

∆̂k
θi :=

1

Bk

∑
τ∈Bk

Gθi(τ, w
k+1
i ) , θk+1

i =θki + ηkθ ∆̂k
θi .

agent i to evaluate its policy with respect to global utility (5)
through the local criterion (12) under the consensus constraint
on its local parameters wi. Next, we incorporate solutions to
(11) into the critic step with a policy update for parameters θi
along stochastic ascent directions via (6) to assemble DSAC.

D. Decentralized Shadow Reward Actor-Critic

Next, we put together these pieces to present
Communication-Efficient Decentralized Shadow Reward
Actor-Critic (CE-DSAC) as Algorithm 1. This scheme
allows agents to keep their local utilities Fi, and policies
πθi with associated parameters θi private. The agents share
a common function approximator for the shadow Q function.
Further, they retain local copies wi of the shadow critic
parameters, which they communicate to neighbors according
to the network structure defined by edge set Ek and mixing
matrix Mk to be subsequently specified.

Algorithm 1 proceeds in four stages: (i) density estimation
step for to obtain the shadow reward; (ii) shadow critic
updates; (iii) information mixing via weighted averaging; and
(iv) actor updates. These stages require access to trajectories
through the MDP for all the agents. In a broad sense,
assuming fixed policy and critic parameterizations for each

Algorithm 2: Event Triggered communication

1 Input: Every agent i keeps a record of neighbour j’s
last communication: ŵ(i, j). If k = 0, ŵ(i, j) = w0

j .
2 for iter = 1, 2, ...m do
3 for agent i = 1, 2, ..., N do
4 if ‖wk+1

i − ŵ(i, i)‖ ≥ εk+1 then
5 Agent i update ŵ(i, i)← wk+1

i .
6 Agent i sends ŵ(i, i) to its neighbours.

Namely, for all j ∈ N (i), update

ŵ(j, i)← ŵ(i, i)

7 for agent i = 1, 2, ..., N do
8 Exchange information with neighbours:

wk+1
i =

∑
{j:(j,i)∈E}Mk(j, i) · ŵ(i, j).

agent, one may implement actor-critic. The major departure
is that individual agents estimate shadow rewards based
on the empirical marginal occupancy measure, which has
significantly smaller dimension SiAi than that of the global
state S and action spaces A. Additionally, a message passing
step based upon weighted averaging is incorporated. Each
step is detailed next.
(i) Occupancy Measure Estimation. Via trajectory τ , each
agent i evaluates its current policy with respect to the general
utility. This is accomplished by computing its shadow reward,
by first executing a local empirical occupancy measure
estimatorλ̂ki by (13). Then, the shadow reward is compute as
r̂ki = ∇λiFi(λ̂ki ).
(ii) Shadow Policy Evaluation. The shadow reward (9) is
then accumulated along the trajectory to form the local policy
evaluation error `i [cf. (12)] with respect to the shadow Q
function (10). Note that the shadow Q function QπFi(s

t, at)
is substituted by an empirical estimate along the current
trajectory. Specifically, Q̂ti =

∑H
t′=t γ

t′−t · ri
(
st
′

(i), a
t′

(i)

)
is

the accumulation of rewards starting from (st, at). Then,
differentiating the resulting expression with respect to local
critic parameters wi yields the critic gradient direction:

Gwi(τ,ri,wi)=

H∑
t=0

γt ·(Qwi(st, at)−Q̂ti)·∇wiQwi(st,at), (14)

where agent i then uses to update its local shadow critic
as ŵk+1

i = wki − ηkw · ∆̂k
wi at step k + 1, under the

initialization with w0
1 = · · ·w0

N and step-size ηkw specified as
in Theorem IV.6. Moreover, ∆̂k

wi is a mini-batched version
of the stochastic gradient in (14) specified in Algorithm 1.
(iii) Information Exchange. To ensure information effec-
tively propagates across the network Gk, agents perform a
simple weighted averaging step using mixing matrix Mk,
which is a symmetric doubly stochastic matrix that respects
the edge connectivity of the graph, see Assumption IV.3 for
details. When agents execute m-steps of averaging per step
k, we compactly express it as W k+1 ← Mm

k ·W k+1. We
note that the time-varying connectivity of graph results in



less number of edges across the network as compared to a
fully connected network as long as the edge connectivity is
respected. This allows to reduce communication requirements
at each step k in the network.
(iv) Policy Update. Given the Q-function approximation
parameter wi, the policy gradient is constructed as

Gθi(τ, wi)=

H∑
t=0

γtQwi(s
t, at)∇θi log π

(i)
θi

(at(i)|s
t). (15)

which is a stochastic approximation of the gradient in (6).
Notice that replacing Qwi(s

t, at) with the exact shadow Q-
function QF (st, at) reduces (15) to the REINFORCE [33]
estimator equipped with the newly defined shadow Q-function.
Then, each agent executes a simple mini-batch stochastic
gradient ascent step.
Event-Triggered Communications. Now we propose a
variant of CE-DSAC where agents only transmit local
critic parameters if they are statistically significant, which
refines communication module of Algorithm 1. In particular,
the event-triggered communication module summarized in
Algorithm 2 dictates that agent i tracks an auxiliary variable
ŵ(i, i) which is the value of its critic parameters at the
previous time instance, and sends its parameters wk+1

i to
neighbors j ∈ N (j) only if the change exceeds an ε-threshold
in magnitude, i.e., ‖wk+1

i − ŵ(i, i)‖ ≥ εk+1. Otherwise,
its neighbors use the previous value ŵ(j, i). The event-
triggered variant employs Algorithm 2 in place of steps 8-10
in Algorithm 1.

IV. CONSISTENCY AND SAMPLE COMPLEXITY

In this section, we study the convergence rate of agents’
policies θi when following Algorithm 1 to stationary points
of global utility (5). Our key result builds upon the fact
that weighted averaging (Sec. III-D(iii)) causes agents’ critic
parameter estimates to tend to the globally aggregated shadow
value function [cf (11)] at rates common to multi-agent
optimization [20]. Then, we analyze the evolution of the
attenuation of the gradient norm of the general utility (5),
which is bottlenecked by the trajectory subsampling error, a
function approximation error term depending on the richness
of the chosen features in (7), a decreasing function of the
iteration index, and a consensus error. Overall, we obtain
that to achieve ε-stationarity, Õ(1/ε2.5) (Theorem IV.6) or
O(1/ε2) (Corollary IV.8) samples are required, depending on
the number of communications per step, akin to best known
rates for non-concave expected maximization problems [34].
We also establish that for this setting, there are no spurious
extrema, meaning that agents obtain a globally optimal policy
(Corollary IV.7).

Before continuing, we introduce several technical condi-
tions which are required for the analysis. Specifically, for the
utility function F , the parameterization πθ, and the shadow
Q-function approximation Qw, we assume the following.

Assumption IV.1. For utility F [cf. (5)], we assume:
(i) Local utility function Fi(·) is private to agent i.
(ii) For local utility Fi, ∃CF >0 s.t. ‖∇λ(i)

Fi(λ(i))‖∞≤CF

in a neighbourhood of the occupancy measure set.
(iii) For ∀i ∈ V , ∃Lλ > 0 s.t. ‖∇λ(i)

Fi(λ(i)) −
∇λ(i)

Fi(λ
′
(i))‖∞ ≤ Lλ‖λ(i) − λ

′
(i)‖.

(iv) ∃Lθ > 0 s.t. ‖∇θF (λπθ )−∇θF (λπθ′ )‖ ≤ Lθ‖θ − θ′‖.

Assumption IV.2. For the parameterization πθ and the
occupancy measure λπθ we assume the following holds:
(i) The local policy π(i)

θi
is private to the agent i.

(ii) ∃ Cπ > 0 s.t. for each agent i, its score function is
bounded: ‖∇θi log π

(i)
θi

(a(i)|s)‖ ≤ Cπ , for ∀ θ and ∀(s, a).
(iii) ∃ `θ > 0 s.t. ‖λπθ − λπθ′‖ ≤ `θ‖θ − θ′‖.

For mixing matrices {Mk}, we require the following.

Assumption IV.3. In Algorithm 1, the mixing matrix Mk is
a doubly stochastic matrix satisfying the following properties:
(i) Mk∈RN×N+ is symmetric with Mk(i, j)>0 at edges (i, j)∈
Ek.
(ii) Mk · 1N = 1N , where 1N ∈ RN is the all-ones vector.
(iii) The eigenvalues of Mk satisfy 1 = σ1(Mk)>σ2(Mk)≥
· · ·≥σN (Mk), and supk≥0 max{|σ2(Mk)|, |σN (Mk)|}<ρ<
1. (iv) For the event triggered communication case, we assume
the network is static, i.e., Mt ≡M,∀t ≥ 0.

Throughout the iterations of Algorithm 1, we also make
the following assumption on the critic objective function.

Assumption IV.4. `(w;πθk) is µw-strongly convex for all k.

Assumption IV.1 prescribes boundedness of the gradients
of the general utility w.r.t the occupancy measure, as well
as its Lipschitz continuity, together with the gradient of the
general utility with respect to the policy parameters. Together,
these conditions ensure smoothness of the general utility
with respect to policy parameters. Assumption IV.2 ensures
that the score function is bounded, and that the occupancy
measure is smooth with respect to policy parameters. These
conditions are common to reinforcement learning algorithms
focusing on occupancy measures in recent years [12], [18],
and are automatically satisfied by common policies such
as the softmax. Assumption IV.3 holds for any undirected
connected graph [24].

Lastly, Assumption IV.4 means that the minimum eigen-
value of the feature covariance matrix

∑
s,a λ

π
θk (s, a) ·

φ(s, a)φ(s, a)> is uniformly lower bounded by some constant
µw > 0. Note that the shadow reward rπ is changing with
iteration index k, and consequently we cannot assume that
the fitted shadow Q-function perfectly tracks the true shadow
Q-function. Motivated by the subtleties of the quality of a
feature representation, we further place a condition on the
shadow value function approximation error.

Assumption IV.5. For any parameterized policy πθ, we
denote optimally fitted critic parameter as w∗(θ). Namely,
w∗(θ) := argminw

1
N

∑N
i=1 `i(w;πθ) [cf. (11)]. Then we

assume the following feature mis-specification error is uni-
formally upper bounded by some constant W > 0:

E2
θ :=

N∑
i=1

‖∇θiF (λπθ )−∆θi‖
2 ≤W, ∀θ (16)



(a) Environment (b) Average return (c) Average cost (d) Consensus error

Fig. 1: Safe navigation in a multi-agent cooperative environment with 4 agents and 4 landmarks as an instantiation of a constrained MDP, where constraints are imposed
to avoid the muddy region while reaching the goal. Note that the state space in this case would be 16 dimensional (location of agent and landmarks). We run this experiment
for three different time-varying communication graphs; fully connected (FC) (all the agents are connected to each other), ring (all the agents are connected using ring topology
which changes for each iteration), and random (where agents are randomly using Erdős-Rényi random graph model at each iteration). (a) We plot running average of the reward
return. (b) We plot the running average of the constraint violation. (c) We plot the running average of the consensus error for agent 1 and agent 4 for ring and random network.

where ∆θi := E
[∑+∞

t=0γ
t ·Qw∗(θ)(st,at)·∇θi log π

(i)
θi

(at|st)∣∣s0 ∼ ξ, πθ] is the PG estimate under w∗(θ), and Qw(s, a)
is function approximation of the shadow Q function [cf (7)].

The E2
θ defined above quantifies the degree of misspecifi-

cation of the features used to define (7). Note that if they are
chosen by a universal function approximator such radial basis
functions centered at a dense grid across the state-action
space, or a well-calibrated auto-encoder, then the shadow
Q-function approximation may be near perfect, i.e., E2

θ ≈ 0.
To analyze how Algorithm 1, we describe the high level

idea of the proofs here. The proofs are deferred to a future
journal version of this work. We begin by a standard stochastic
gradient ascent analysis, illuminating its dependence on
the gradient estimation error ‖

∑N
i=1 ∆̂k

θi
−∇θiF (λπθk )‖2,

which may be decomposed into attenuating error terms and a
term associated with decentralization

∑N
i=1 ‖w

k+1
i −wk+1

∗ ‖2,
where we denote wk+1

∗ = w∗(θk) for the ease of notation.
The later term is split two parts: a consensus error and the
optimality gap of the critic fitting problem.

A subtlety emerges due to the presence of the persistent
consensus error ‖w̄k+1−wk+1

∗ ‖2. That is, F (λπθk ) may not
be increasing (except for the O(B−1k + γ2Hk) stochastic esti-
mation errors), which motivates us to carefully construct the
following potential function: Rk := F (λπθk )−α‖w̄k−wk∗‖2

with α =
18C2

φC
2
π

(1−γ)2µw ·maxk≥0{ηkθ/ηkw}. Based on this potential
function, we could characterizes the algorithm performance
in terms of optimization error, the feature mis-specification
error, the stochastic PG approximation error, and the multi-
agent consensus error. By carefully specifying the algorithmic
parameters, then, we have the following.

Theorem IV.6. Suppose the Assumption III.3, IV.1, IV.2, IV.4
and IV.3 hold, and there is only one round of communication
in each iteration, i.e. m = 1. Then, Algorithm 1, under the
following parameter selections:

(i) For final iteration T = O(ε−1.5), trajectory lengths
Hk ≡ O

(
log(1/ε)
1−γ

)
, δk ≡ δ

3N(T+1) , δ ∈ (0, 1), batch sizes
Bk ≡ log(1/δk)ε−1, constant step-sizes ηw = O(

√
ε), ηθ =

min
{

(1−γ)µwηw
CwCφCπ

· 1
6
√
10N

, 1
4Lθ

}
=O(

√
ε),

1

T

T∑
k=1

‖∇θF (λπθk )‖2 ≤ O (ε+W ) . w.p. 1− δ

(ii) For unspecified final iteration T , we adaptively set:
δk = 2δ

Nπ2(k+1)2 , δ ∈ (0, 1), trajectory lengths Hk =

O((1−γ)−1 log(k+1)), batchsizes Bk = log(1/δk)(k+1)
2
3 ,

and step-sizes ηkθ = min
{
(1−γ)µwηk+1

w

CwCφCπ
· 1
6
√
10N

, 1
4Lθ

}
, ηkw =

min{(k + 1)−
1
3 , L−1w }, then∑T

k=1 η
k
θ

∥∥∇θF (λπθk )
∥∥2∑T

k=1 η
k
θ

≤O
(
log T

T
2
3

+W

)
, w.p. 1− δ

In either case, Algorithm 1 requires Õ(ε2.5) samples to

satisfy
∑T
k=1 η

k
θ‖∇θF (λ

π
θk )‖2∑T

k=1 η
k
θ

≤ O(ε+W ).

Next, we establish that for concave general (1) (and hence
local (5)) utilities, there are no spurious stationary points.

Corollary IV.7 (Convergence to global optimality). Suppose
the general utility F is concave, and the shadow value
function QF is realizable, i.e., W = 0 in (16). Then
for policies πθ satisfying Assumption 1 of [18], every
stationary point is a global optimizer. In Theorem IV.6(ii),
if we further let θ̄T be the parameter randomly chosen
from {θk}Tk=1 where θ̄T = θk w.p. ηkθ/(

∑T
k′=1 η

k′

θ ), then
limT→∞ E[‖∇θF (λπθ̄T )‖2|FT ] = 0 w.p. 1− δ. Thus, Algo-
rithm 1 converges to the global optima.

The preceding result is about the asymptotic performance
of Algorithm 1. Next we spotlight the role of the number of
communication steps in the convergence rate.

Corollary IV.8 (Multiple-round communication). Suppose
we allow multiple steps of information exchange, i.e., m > 1.
Then under the same parameter selections as Theorem IV.6(i),
but additionally setting final iteration index T = ε−1, number
of communication rounds m = O((1− ρ)−1 log(ε−1)), and
the step-sizes ηkθ ≡ min

{
(1−γ)µw/Lw
CwCφCπ

· 1
6
√
10N

, 1
4Lθ

}
, ηkw ≡

L−1w , then the total sample complexity is O(ε−2).

This result specifies that with additional communication
rounds m = O((1− ρ)−1 log(ε−1)) per actor update k, the
convergence rate refines from O(ε−2.5) to O(ε−2). Following
a similar strategy, we can show the sample complexity for
Algorithm 1 when the event triggered communication scheme
(Algorithm 2), is applied.

Theorem IV.9. Suppose the Assumption III.3, IV.1, IV.2, IV.4
and IV.3 hold. Then, Algorithm 1, with the event-triggered



(a) Average return (b) Average cost (c) Consensus error (d) No. of Communications

Fig. 2: Safe navigation in a multi-agent cooperative environment with 4 agents and 4 landmarks, an instance of a constrained MDP, where constraints are imposed to avoid
the muddy region while reaching the goal – see Fig. 1 (a). Note that the state space in this case would be 16 dimensional (location of agent and landmarks). We run this
experiment for fixed binomial graph with full communications (denoted by DSAC) and with event triggeting (denoted by DSAC-ET). (a) We plot running average of the reward
return. (b) We plot the running average of the constraint violation. (c) We plot the running average of the consensus error for agent 1 and agent 4. (d) We plot the average
number of communications happening per epochs in the network. We note that the algorithm is able to achieve the similar performance in terms of average return with less
number of overall communications.

communication module (Algorithm 2), under the following
parameter selections: T = ε−1, trajectory lengths Hk ≡
O
(

log(1/ε)
1−γ

)
, δk ≡ δ

3N(T+1) , δ ∈ (0, 1), batch sizes Bk ≡
log(1/δk)ε−1, number of communication rounds m = O((1−
ρ)−1 log(ε−1)), constant step-sizes ηkθ ≡ min

{
(1−γ)µw/Lw
CwCφCπ

·
1

6
√
10N

, 1
4Lθ

}
, ηkw ≡ L−1w , and εk ≡ O(

√
ε), then

1

T

T∑
k=1

‖∇θF (λπθk )‖2 ≤ O (ε+W ) . w.p. 1− δ

The total sample complexity will be Õ(ε−2).

Communication Efficiency: We remark that if α-fraction
of the total Tm rounds of critic updates are smaller than
the threshold εk for an agent i, and for some α ∈ (0, 1),
then potentially αTm rounds of communications are saved
for agent i due to the event triggered mechanism. Next, we
shift to investigating the experimental merit of the proposed
approach.

V. EXPERIMENTAL RESULTS

We experimentally investigate the merit of Algorithm 1
in the context of multi-agent problems. We experiment with
N = 4 agents moving in a two-dimensional continuous space
associated with the problem of Safe Cooperative navigation
[35]. Since the state space is continuous, we use discretization
of the state space to estimate the respective occupancy
measure. Unless otherwise stated, we have used a 2 layer
with 64 nodes per layer deep neural network (DNN) for the
actor as well as critic in the experiments. We use a learning
rate of 0.001 for all the experiments and a batch size of
10 for the count based density estimator. One epoch in the
experiment consists of 1000 episodes unless otherwise stated
and the maximum number of steps per episode are 50. We
have reported running averages for all the results reported in
this paper, such as, the general utility, the constraint violation,
and the consensus error.

For the experiments, we consider a 4 agent cooperative
environment from [35] where each agent needs to reach its
assigned goal while traversing only through the safe region as
visualized in Fig.2(a). In Fig.2(a), the red circle denotes the
agents and white circle represents their corresponding goals.

The aim here is to learn the trajectories such that it doesn’t
pass through the center of the region (mud in the middle of
grassy region). The white arrows shows the preferred path
in the figure. Agents receive a negative reward proportional
to its distance from the landmark, and an additional negative
reward of −1 if agents collide. Additionally, each agents
receive a high cost of c = 1 if it passes through the
unsafe region (middle of the state space) – see Fig. 2(a).
Note that this behavior could be learned in a policy of
a agent i via imposing a safety constraint for each agent
〈λπi , c〉 ≤ C where λπi in the marginalized occupancy
measure. This local constraint could be introduced into
the global common objective as a quadratic penalty as
F (λπ) = 1

N

∑N
i=1〈λπi , ri〉 − z

∑N
i=1 (〈λπi , c〉 − C)

2, where
z is the penalty controlling parameter. Depending upon the
connectivity among the agents, we divide the experiments
into two parts: A) Time varying network, and B) Intermittent
communications. Next, we provide further details for each
set of experiment we presented in the paper.

A. Time-varying Network

We use the proposed DSAC algorithm to solve problem,
and present the results for the average reward and constraint
violation, respectively, in Fig. 1. For the experiments, we
consider three different scenarios of network connectivity
namely; fully connected (FC) (all the agents are connected
to each other), ring (all the agents are connected using
ring topology), and random (where agents are randomly
connected using Erdős-Rényi random graph model with p
being uniformly selected between 0 and 1). Note that even
for the ring topology, the network graph changes at each
iteration t. We plot the running average of the reward returns
(Fig. 2(b)), running average of the constraint violations (Fig.
2(c)), and running average of the consensus error (Fig. 1(d))
for agent 1 and 4 in Fig. 1. Since the consensus error was
converging to zero quickly, we have plotted it using log scale
and episodes for the x axis.

B. Intermittent Communications

To show the effectiveness of the proposed scheme in
Algorithm 2, we consider a 4 agent fully connected network
to solve the safe cooperative navigation problem. For the
experiment, we consider a constant threshold of ε = 0.03



and compare the results to scenario when ε = 0 (standard
communication architecture) in Fig. 2, the performance with
ε > 0 is almost similar to the case when critic parameters
are transmitted at each time. But we save a lot in terms of
number of communications we need to perform as shown
in Fig. 2(d). We remark that the proposed algorithm with
event triggering is able to save a lot of communications and
achieves the similar performance in terms of average return.
This is really important from practical point of view because
performing communication is more costly.

VI. CONCLUSIONS

We contributed a conceptual basis for defining agents’
behavior in cooperative MARL beyond the cumulative return
via nonlinear functions of their occupancy measure. This
motivated defining “shadow rewards” and DSAC, whose critic
employs shadow value functions and weighted averaging.
We analyzed such a scheme on realistic communications
models based upon fixed delay and event-triggered schemes,
specifically establishing its consistency and sample complex-
ity. Further, experiments illuminated the upsides of general
utilities for multi-agent navigation problems amidst obstacles.
Future work includes generalizations to continuous spaces,
fusions of model-based and model-free approaches, and
allowing partial observability.
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