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Abstract— We consider the problem of policy search in se-
quential decision making problems with imperfect information
as encapsulated by a partially observed Markov Decision Pro-
cess (POMDP) over possibly continuous state-spaces. In general,
the optimal policy is history-dependent and the objective is non-
convex in the policy parameters, making even stationary point
policies challenging to ascertain. To address this problem class,
we develop a constructive way to succinctly represent the his-
tory as an approximate information state, using Semiparametric
Information State Embedding (SISE). SISE alternates between
conditional kernel density estimation and fitting the parameters
of an Echo State Networks (ESNs), a one-layer recurrent
neural model. Based upon constructing SISE, we develop an
actor-critic scheme for policy search over the approximate
information states. Our main technical contributions are to (i)
establish the convergence and generalization performance of
SISE, and to (ii) derive the convergence to stationary points of
our policy search scheme. Experimentally, our fusion of SISE
and actor-critic yields favorable performance in practice on
the canonical POMDPs of Tiger, LightDark, and a partially
observed variant of CartPole.

I. INTRODUCTION

Partially Observed Markov Decision Processes (POMDPs)
are a mathematical framework to address sequential deci-
sion making under imperfect information [1]. Consider an
agent interacting with an environment that is only partially
observable. The agent receives an observation ot ∈ O ⊆ Rd,
which is a proxy for the underlying (hidden) state, chooses a
control action ut ∈U ⊆Ru at discrete time t, and in return,
the environment reveals a reward rt ∈R. The observation ot
does not satisfy the Markov property, so an informed decision
cannot be taken using only the observations. For such a
non-Markovian system, it is necessary to select actions that
depend on the history of observations and actions, ht :=
{ok,uk−1,rk−1}0≤k≤t . The objective in such a sequential deci-
sion making problem is to maximize the expected discounted
cumulative return, or value:

Jopt = sup
π

Eπ

[ ∞

∑
j=0

γ
j r j

]
. (1)

where γ ∈ [0,1) is an economic discount factor. Let Ft :=
σ({ok,uk−1,rk−1}k≤t) denote the sigma algebra generated
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by history ht . The policy of the agent is a mapping from
the history to the distribution of actions, π = {πk}k≤t , such
that πt : Ft → P(A ). Clearly, keeping track of the entire
history ht for decision making becomes infeasible owing to
memory and computational complexity.

In environments where the model is known and state-
action spaces are finite, it is possible to maintain a dis-
tribution over the states called the belief state, which is
sufficient for decision-making [1]. However, due to the fact
that the complexity of a belief representation scales with the
cardinality of the state space, it is infeasible for large or
possibly continuous spaces. This motivates alternative low-
dimensional representations that approximately summarize
the history, and are sufficient for decision making. When
such a representation of the history is (approximately) suffi-
cient for decision making, we refer to it as an Approximate
Information State (AIS).

A multitude of such representations are possible. One
simple example of approximate information states is a fixed-
memory window of the history [2], [3]. A quantitative
relation between the approximation error and the window
size in this method has been established very recently
in [4]; and convergence of policy gradient methods using
such representations is analyzed in [5]. Another example
of state representation is the Predictive State Representa-
tion (PSR) [6], [7]. A PSR is a set of multi-step action-
observation sequences such that knowing the results of these
sequences is sufficient to predict the future observation of
every possible action-observation sequence. A similar point
of view aims to learn a causal state representation [8]. This
method partitions histories into clusters using a metric that
is related to the predicted subsequent observations, and then
builds a causal graph of observations. A recent work [9]
introduces a set of sufficient conditions for performance
evaluation, and proves the overall performance degradation is
bounded if these conditions are only approximately satisfied.
Recurrent Neural Networks (RNNs) have also been widely
utilized to learn approximate information states [10]–[12]
due to the recent surge in using deep neural networks for
reinforcement learning.

These methods demonstrate good empirical performances
on various benchmark tasks, but generally do not have the-
oretical guarantees on the approximation error with respect
to the true reward/observation likelihoods. See [13] for a
detailed survey of state representation learning in control.
Overall, then, there is an open question as to whether
one may quantify the quality of a given construction of
a distributional model for the posterior distribution over



observations or rewards. This gap has made convergence of
policy search in POMDPs mostly contingent on unverified
conditions, to date.
Main Contributions. Based upon this gap, we develop
joint search procedures for efficient representations of the
history and policy optimization over these representations,
the result of which is a conceptually grounded approach to
policy search. Our approach builds upon the definition of an
Approximate Information States (AIS) in [9] to contribute
the following:

1) Unlike [9], [14], we provide a constructive algo-
rithm (Algorithm 1) to build approximate informa-
tion states by alternating between conditional kernel
density estimation and fitting the parameters of an
RNN, whose representational power we theoretically
characterize (Theorems 2 - 4). This representation is
semi-parametric in the sense that the conditional kernel
density estimation is non-parametric, but is used as
a target for fitting an RNN, which is a parametric
representation.

2) We provide a policy optimization algorithm (Algo-
rithm 2) based on the Actor-Critic methodology that
operates over the approximate information states, and
analyze the convergence properties of this algorithm
(Theorem 1).

3) We show that the developed joint search procedure
(alternate history representations & policy optimization
over these representations) not only has theoretical
guarantees, but empirically is competitive with [9].

II. APPROXIMATE INFORMATION STATES

In this section, we begin by formalizing the notion of an
Approximate Information State as any map of the history
ht := {ok,uk−1,rk−1}0≤k≤t that exhibits two key proper-
ties [9]. Then, we shift to constructing Semiparametric In-
formation State Embedding (SISE) using conditional kernel
density estimates – whose bias as a function of the number
of observation-action pairs processed may be rigorously
characterized– and a neural network (Echo State Networks)
based approximation of the low-dimensional history repre-
sentation.

We proceed by more formally noting the two probabilistic
attributes that must be satisfied by an AIS. The first is that
it smoothly incorporates new information (ok+1,uk,rk) in a
manner reminiscent of a posteriori updates, and the second
is that the posterior distributions it defines over rewards or
observations conditional on the history are nearly consistent.

Definition 1. (Approximate Information State) An Approxi-
mate Information State It =F(ht)∈X ⊆Ra is any function
of the history ht that satisfies the following properties [9]:

1) Consistency of Conditionally Expected Reward: For
some εr > 0,

|E[rt |ht ,ut ]−E[rt |It ,ut ]| ≤ εr. (2)

2) State-like Evolution and Near-unbiasedness of Obser-
vation Distribution:

(i) The evolution across time appends observation-
action pairs: It+1 = H (It ,ot+1,ut ,rt), where H is
a Lipschitz map in (o,r).
(ii) The posterior distribution of ot+1 conditioned on
It and history ht as well as control ut are close, i.e.,
for some εo > 0, the conditional distributions

µ(E) = P(ot+1 ∈ E|ht ,ut) ,υ(E) = P(ot+1 ∈ E|It ,ut), (3)

are close d(µ,υ)≤ εo with respect to some metric over
distributions d(·, ·).

For a given history, using the parameters of the POMDP, the
belief distribution is a deterministic (Bayes’ rule) mapping
that leads to a unique distribution over the (underlying)
states that is sufficient for decision making. Similarly, for
the information state representation using an RNN/ LSTM,
a given history is deterministically mapped to a unique
representation sufficient for decision making. The probability
measures in (3) are well defined via the Ionescu-Tulcea
Theorem, see [15].
Approximate Information States are a generalization of the
belief states to representations of history that satisfy belief-
like (Definition 1) properties with a few key differences:
(i) Information states need not lie on a compact space
unlike belief states. (ii) The dimension of information states
is a hyper-parameter that is tuned for low-cost decision
making. For example, in the CartPole experiment (Sec.V),
the state space is R4, making the belief space an intractable
multivariate distribution.

A. Conditional Predictive Density Estimation

In this subsection, we develop a non-parametric method of
kernel density estimation to fit the conditional observation
predictive distribution P(o|I ,a) and the reward distribu-
tion P(r|I ,u) using the approximate information state (AIS)
I under the operating hypothesis that I is fixed. In Sec. II-
B, we will shift to how to estimate I .

To construct the aforementioned kernel density estimates,
we require the ability to generate observation-reward tuples
{ot ,rt}t≥0, which may be addressed under the hypothesis
that we have access to a generative model or a simulator of
the environment that provides observations and rewards in
response to actions of the agent given AIS. Specifically, the
agent is able to query an environment oracle, which provides
the data {ot ,rt}t≥0. The generative model furnishes the data
required to perform conditional predictive density estimation.

For convenience, let f (·|I ,u) denote the conditional
density associated with distribution P(·|I ,u). Let N denote
the number of unique actions and information states, i.e., a
collection of tuples of the form {ut ,It}t≤N . For each action
and approximate information state, (ut ,It), we generate L
distinct observations and rewards simulated for each action
and approximate information state to form a data set of
the form DL

N := {olt ,rlt}N,L
t,l=1, meaning that there are NL

calls to the generative model (simulation oracle). Based
upon this trajectory information, the sample estimates for the
conditional density of observations f̂N(o|I ,u) and rewards



f̂N(r|I ,u) take the following forms, respectively:

f̂N(o|I,u)

=
1

Lbd
o

∑
N
i=1K

(
‖u−ui‖

bu

)
K
(
‖I−Ii‖

bI

)
∑

L
l=1K

(
‖o−oil‖

bo

)
∑

N
i=1K

(
‖u−ui‖

bu

)
K
(
‖I−Ii‖

bI

) (4)

f̂N(r|I,u)

=
1

Lbr

∑
N
i=1K

(
‖u−ui‖

ba

)
K
(
‖I−Ii‖

bI

)
∑

L
l=1K

(
‖r−ril‖

br

)
∑

N
i=1K

(
‖u−ui‖

bu

)
K
(
‖I−Ii‖

bI

)
(5)

where the kernel K is any nonnegative function of its scalar
argument, and b{·} > 0 denotes the kernel bandwidth. The
key parameters, i.e., sufficient statistics, in kernel density
estimation are the data and the bandwidth parameters. The
bandwidth parameters can be optimized using any of the
procedures outlined in [16], [17].

B. Echo State Networks

Echo State Networks (ESNs) integrate the history of
observations, actions and rewards in its reservoir states, and
can control the weight of the historical information [18],
and are an elementary version of a recurrent neural network.
The input to an ESN is observation-action-reward triple
(ot ,at−1,rt−1), and the history ht is summarized in the
reservoir states xt ∈X ⊆Ra. The temporal evolution of such
a network is governed by the following non-linear dynamical
system

xt = (1−β )xt−1 +β fx

(
W xxt−1 +W y

 ot
ut−1
rt−1

), (6)

where β ∈ [0,1] is the tunable leaking factor that controls
the weight of historical information, and W x ∈ Ra×a and
W y ∈Ra×(d+u+1) denote the weight matrices of the ESN. The
vector function fx :Ra→Ra is understood to act component-
wise on its argument and is typically a sigmoid.
The ESN parameters that can be optimized are:

δ = {β ,W x,W y}. (7)

The parameters δ in (6) are optimized so that the pre-
dictive reward distribution P(rt+1|It ,ut) and the predictive
observation distribution P(ot+1|It ,ut) are close to the true
values P(rt+1|ht ,ut) and P(ot+1|ht ,ut). This ensures that It
satisfies Definition 1.

Assumption 1. The conditional kernel densities f (o|u,I )
and f (r|u,I ) are bounded and non-zero with probability 1:

0 < ξ0 ≤ | f (o|u,I )| ≤ 1, and 0 < ξr ≤ | f (r|u,I )| ≤ 1.
(8)

Assumption 1 is satisfied by any kernel whose operator
norm decays sufficiently quickly, i.e., the associated kernel
matrices exhibit eigenvalue decay, as with Gaussian and
polynomial kernels.
Remark: With a slight abuse of notation, I (δ ) is used

Algorithm 1 Semiparametric Information State Embedding
(SISE)

1: Input: Number of evaluative actions N, the number of
observations (and rewards) per action L, initial parame-
ters of Echo State Network δ0, threshold parameter ϑI >
0. Information state simulation parameters µ̂, σ̂ .

2: While |δτ+1−δτ |> ϑI do:
3: Generate AIS I0 ∈ Rx from N (µ̂, σ̂). // This is

any arbitrary distribution.
4: Collect DL

N(δτ)= {(on,l ,rn,l)}L,N
l=1,n=1 using NL calls

to the simulator.
5: Using DL

N(δτ), compute f̂N(o |I (δτ),u) and f̂N(r |
I (δτ),u) for δτ [cf. Sec.II-A]

6: Using f̂N(o |I (δτ),u) and f̂N(r |I (δτ),u), solve
(12) to obtain δτ+1, where

7: δτ+1 = argmaxδ L (δ ) [cf. (11)].
8: τ = τ +1.
9: End

10: Output: the converged echo state parameters δτ∗ ,
where |δτ∗+1−δτ∗ | ≤ ϑI .

to denote that the reservoir state/AIS propagated using the
echo state parameters δ , and data hence collected is denoted
as DL

N(δτ). Note that I (δ ∗) is the AIS, but we use reservoir
state/AIS interchangeably to simplify exposition.
Subsequently, we reinterpret It = It(δ ) as being param-
eterized by δ , the echo-state parameters (7), which we
seek to fit in a maximum likelihood fashion to the density
estimates defined in Sec.II-A. Specifically, we consider the
following bounded loss functions Lr ∈ [0,1] and Lo ∈ [0,1]
that respectively quantify the closeness to the reward and
observation densities:

Lr(δ ) =
−1

ξr ·NL

N,L

∑
m=1,l=1

log( f̂N(rml |Im(δ ),um)), (9)

Lo(δ ) =
−1

ξo ·NL

N,L

∑
m=1,l=1

log( f̂N(oml |Im(δ ),um)). (10)

Thus, (9) approximates the KL-divergence between empir-
ical and the true density f (r|u,h). Moreover rm,om denote
the observed reward and observation from the simulator at
time m. We propose the composite loss function

L (δ ) =
1
2
(Lo(δ )+Lr(δ )) (11)

that accounts for both the fitness of reward and observation
distributions. We then seek to minimize it over the empirical
data set DL

N ,

δ
∗ = argmaxδ L (δ ) , (12)

which yields parameters that minimize the KL-divergence
between the approximate and true predictive distributions.
Reservoir states associated with the ESN propagated across
time using δ ∗ in (12) define the AIS we consider.



C. Alternating Minimization for Approximate Information
States

In this section, we assemble the pieces of the previous
subsections into an alternating minimization procedure to
compute the parameters of the Echo State Network that map
any history into approximate information states. This map-
ping facilitates (approximately) optimal sequential decision
making using a policy parametrization to be subsequently
defined.

The resulting procedure which we call Semiparametric
Information State Embedding (SISE), is summarized as Al-
gorithm 1. The algorithm operates by alternating conditional
kernel density estimates over a batch of N × L samples –
L observation-reward pairs (ril ,oil)

L
l=1 are simulated upon

for a fixed action ui and AIS Ii(δ ), where the action
is selected using any arbitrary distribution over A , and
AIS is propagated using fixed ESN parameters δ starting
from I0. We assume that the sampled observations are
also identically distributed. This can be achieved, for ex-
ample, for each In(δ ), by repeatedly applying randomly
chosen un (from arbitrary distribution over A ) for duration L
to get a sequence of observations and rewards. Over this
fixed batch of data DL

N(δ ) = (ril ,oil)
N,L
i=1,l=1, we alternate

between solving for the conditional kernel density and the
ESN parameters (12) that define the AIS. This process is
repeated for steps τ = 1,2, . . . until the termination criterion
|δτ+1 − δτ | ≤ ϑI is satisfied. The output is an AIS I (δ )
which may be rigorously shown to satisfy the properties
of Definition 1, as we detail in subsequent sections. Before
doing so, we expand upon how the AIS may be employed
for policy search.

III. POLICY SEARCH USING APPROXIMATE
INFORMATION STATES

With our construction of the approximate information state
(Def. 1) I crystallized, we now shift to how this scheme
may be incorporated into making policy search efficient in
terms of the parameter dimension. That is, whereas in a
general POMDP, the policy must be defined over the sigma
algebra Ft (of dimensionality dt ), instead we may now define
it only over the approximate information state I ∈X ⊂Ra

which is of fixed dimension a (see the beginning of Sec. II).
More specifically, we consider policy parameterizations

of the form π : X → P(U ), which map the approximate
information state I to control decisions selected as ut ∼
π(·|It). We subsequently parameterize the policy by a fixed-
dimensional parameter vector θ ∈Rp. So, a policy πθ : X →
P(U ) is a parametric function of the approximate infor-
mation state I . An example parametrization is πθ (·|I ) =
N (θ T I ;σ), where N is a Gaussian distribution with fixed
known variance σ2. Here the dimension a of information
state equals the dimension p of the policy parameters.

This parameterization allows us to define policy search
schemes typical of (fully observable) Markov Decision Pro-
cesses (MDPs), but whose state space is the Approximate
Information State. Before doing so, we make precise the im-
plications of the AIS being “sufficient for decision-making.”

Algorithm 2 Actor-Critic using Approximate Information
States

1: Input: Initialization parameters λ0 ∈ Rv and θ0 ∈ Rp,
I0 ∈ Ra, and step-sizes {αt ,βt}t≥0.

2: For t = 1,2, · · · do:
3: Propagate It(δ

∗) using δ ∗ obtained from Algo-
rithm 1, take action u∼ πθt (·|It).

4: Compute reward R(It ,ut) and the next
state It+1(δ

∗) using (6).
5: Compute Temporal Difference (TD)-error

∆t = R(It ,ut)+ γ ·Vλt (It+1)−Vλt (It) (13)

6: Update the parameters as:
θt+1 = θt +αt ·∆t ·∇θ logπθt (ut |It). (14)
λt+1 = λt +βt ·∆t ·∇λVλt (It). (15)

7: End
8: Output: Sequences {θt}t≥0 and {λt}t≥0.

As formalized in [9, Theorem 3], given an AIS that satisfies
Def. 1, one may write the Bellman optimality equation as
follows. Let J (·) : X → R denote the value function on
the AIS space, i.e.

J (I ) = sup
u∈U

{
R(I ,u)

+γ

∫
o∈O,r∈R

P(o,r|I ,u)J (H (I ,u,o,r))
}
,

(16)
where R(I ,u) = E[r|I ,u], and H (It ,ot+1,ut ,rt) = It+1.

Here r denotes the reward output of the simulator and H (·)
is the next AIS mapping which is described by the non-linear
dynamical system update of ESN in (6). It was shown in [9,
Theorem 5] that J in (16) is close to Jopt in (1). This implies
that, once Echo State Network parameters are tuned, one can
invoke policy search algorithms for reinforcement learning
problems to compute the optimal policy of the imperfect
information problem.

Next, we will include the convergence result for Actor-
Critic on continuous state-action spaces. As before, let {πθ :
θ ∈ Rp} denote the family of parameterized policies, and
let Vλ : λ ∈ Rv denote the parametrized family of value
functions. Define

g(λ ,θ) := E
{[

R(I ,u)+ γ ·Vλ (I
′)−Vλ (I )

]
∇λVλ (I )

}
,

(17)

where E := EI∼dπθ
(I ), u∼πθ (·|I ), I ′ denotes the next state,

and dπθ
(I ) := ∑

∞
t=0 γ tP(It = I |πθ ) is the information

state-occupancy measure of policy πθ . Here Vλ (I ) denotes
the critic approximated using non-linear function approxima-
tion, and πθ (·|I ) denotes the actor policy.

Assumption 2.
• For any I ∈ Ra and λ ∈ Rv, let |Vλ (I )| < ∞,
‖Vλ (I )‖2 < ∞, and ∇λVλ (I ) is Lipschitz continuous.



Also, ‖∇θ logπ(a|I )‖2 < ∞ for all (u,I ) ∈ A ×Rv

and θ ∈ Rp.
• For function g(λ ,θ) in (17), for each θ , the ODE λ̇ (t)=

g(λ (t),θ) has a local asymptotically stable equilibrium
in K(θ),

K(θ) := argmin
λ

‖Vλ −T πθ Vλ‖2
dπθ

(I ), (18)

where T πθ is the Bellman operator.
• Step-sizes for the actor ∑αt = ∞ and ∑α2

t <
∞, critic ∑βt = ∞ and ∑β 2

t < ∞, and time-
scale limt→∞

αt
βt

= 0.

Theorem 1 (Actor-Critic). Let the ESN parameters be
obtained as in (12). Suppose Assumption 2 holds. We have,
using Algorithm 2, {λt ,θt} → {λ ∗,θ ∗} w.p.1, where λ ∗ ∈
K(θ ∗) in (18).

Here Jθ (I ;λ ∗) := Vλ ∗(I ) denotes the value function
on the AIS space with policy parameters θ , and θ ∗ ∈{

θ : ∇θ Jθ (I ;λ ∗) = 0
}

denotes the policy parameters
corresponding to stationary points of the value function.
Theorem 1 essentially says that on the faster time-scale
the parameters of the value function converge to the stable
equilibrium points of the related ODE, while the policy
parameters converge to stationary points on the slower time-
scale. The proof uses arguments in [9] to map the POMDP to
(approximate) Information State MDP, and then perform two-
time scale convergence analysis of Actor-Critic for continu-
ous MDP similar to [19]. We further note that non-asymptotic
analysis of Algorithm 2 using either lock in probability [20],
[21] or supermartingales [22] remains an open problem due
to the interaction between the estimation steps involving the
approximate information state, the actor, and the critic.

IV. CONVERGENCE ANALYSIS

In this section, we rigorously establish the performance of
Algorithm 1 as satisfying Definition 1. The analysis proceeds
in two phases: first we establish the attenuation of the bias
of the conditional kernel density estimates as a function of
sample size N. Then, based upon this sub-sampling error,
we are able to characterize the bias defined by the echo-state
parameters generated by Algorithm 1 with respect to the true
predictive distributions of the observation and reward.

To proceed with the consistency of the conditional density
in (4), we fix the metric over distributions employed to
quantify their distance from the true densities as the L1−
distributional difference defined as follows∫ ∫

| f̂N(o|I ,u)− f (o|I ,u)|doP(du ·dI ) (19)

For simplicity of notation, denote the input feature vector by
Φ = [I ,u] ∈X ×U .
Remark: Below we will describe the approximation for the
observation predictive distribution. The methodology carries
over for the reward distribution.

Due to space limitations, the proofs are made available in
an extended technical report associated with this work [23].

Next, we specify the technical conditions under which the
AIS is consistent.

Assumption 3. For C1 > 0, ρ1 ∈ (0,1], and Φ(·) ∈X ×U ,
the predictive observation density f (o|Φ) is such that∫

R
| f (o|Φ1)− f (o|Φ2)| ≤C1‖Φ1−Φ2‖ρ1 (20)

Assumption 4. The observation predictive densities are
such that the joint is a product of the marginals,
i.e., f (ϖ |Φ) = ∏

d
i=1 f (ϖi|Φ), where ϖ = [ϖ1,ϖ2, · · · ,ϖd ] ∈

Rd . The marginal predictive observation densities f (·|Φ) are
Hölder-continuous with exponent ρ2 ∈ (0,1], i.e,

| f (ϖ1|Φ)− f (ϖ2|Φ)| ≤C2 · |ϖ1−ϖ2|ρ2 (21)

for C2 > 0, ϖ(·) ∈ R, and Φ ∈X ×U .

Assumption 5.
• The kernel K has finite integral and moments over its

scalar domain v ∈ R.
∫

∞

∞
K2(v) dv < ∞ and

∫
RK(v) ·

|v|ρ2 < ∞ where ρ2 is the parameter in (21).
• Moreover, its point-wise evaluations are finite

supv∈R |K(v)|< ∞ .

These assumptions are standard in establishing the con-
sistency of kernel density estimates in the multi-variate
input case [24]. Assumption 3 imposes conditions on the
underlying ground truth density we are estimating when
conditioned on different points. Assumption 4 imposes con-
tinuity conditions on the ground-truth density with respect
to its input argument, meaning that the likelihood may
not vary arbitrarily for nearby points. The condition on
the joint distribution factorizing into marginals is standard
for vector-valued kernel density estimation. A conditional
density satisfying Assumptions 3-5 is called regular.

Under these conditions, we have the following posterior
contraction rate for conditional kernel density estimate asso-
ciated with the observations over hidden states.

Theorem 2. Suppose the conditional density f (o|Φ) is
regular. For all N ∈ N, there exists a constant C > 0 such
that the following is true for every Φ ∈X ×U :

E
(∫ ∫

| f̂N(o|Φ)− f (o|Φ)|doP(dΦ)
)
≤C ·N

−ρ1
ρ1+(u+a) (22)

where ρ1 ∈ (0,1] is such that∫
R
| f (o|Φ1)− f (o|Φ2)| ≤C1‖Φ1−Φ2‖ρ1 ,

for some C1 > 0,Φ1,Φ2 ∈X ×U .

Theorem 2 provides the consistency and rate of convergence
of the conditional density estimate, when the error of the
density estimate is measured by the L1-error, as a function
of the sample size. The proof uses analysis similar to [24].

Next we shift to analyzing the approximate information
state which is fit to the target of the conditional kernel density
estimates.

Theorem 3. Let δ ∈ ∆ denote the parameters of the Echo
State Network, where ∆ is the compact parameter space.



Let τ∗ denote the termination time of Algorithm 1 for a given
threshold parameter ϑI . Let L denote the loss function in
(11). As the threshold ϑI → 0, the following holds for the
alternating minimization in Algorithm 1:

δτ∗ = argmaxδ L (δ ) = δ
∗. (23)

Theorem 3 provides a consistency result for Algorithm 1
using Echo State Networks. The proof uses convergence
analysis of alternating minimization procedures similar
to [25]. Theorem 2 and Theorem 3 are necessary to char-
acterize the errors using the densities conditioned on the
approximate information states, which is formalized next.
We continue by first defining the minimal model fitness of
the AIS as follows.

Definition 2 (Minimum Risk). Let L ∈ L, where L denotes
the class of loss functions. With E(·) denoting the expectation
w.r.t data distribution, we define minimum risk of (11) as

R∗(L) = inf
L∈L

E(L ). (24)

Theorem 4. Suppose the conditional density f (o|Φ) is
regular. There is an εo(N,δ ∗) such that the following holds:

dTV ( f (o|I ,u), f (o|h,u))≤ εo(N,δ ∗). (25)

Letting g = min{ 1√
2
, ρ1

ρ1+(a+u)}, w.prob at least 1− γ ,

εo(N,δ ∗) =
√
R∗(L)+O(

1
Ng ) , (26)

that is, limN→∞ εo(N,δ ∗) =
√
R∗(L).

Theorem 4 provides an explicit characterization of the
error in approximating the history using approximate infor-
mation states. The proofs of all results are made available in
an extended technical report associated with this work [23].

V. NUMERICAL EXPERIMENTS

In this section, we evaluate the empirical performances of
algorithms developed for solving POMDP problems, which
constitute an important class of sequential decision making
problems under imperfect information. We compare our
performance with two baselines: the AIS algorithm proposed
in [9] and the vanilla Actor-Critic algorithm. AIS uses a
Gated Recurrent Unit network [26] (or GRU, a variant of
recurrent neural networks) to learn an approximate informa-
tion state, and then utilizes the REINFORCE algorithm [27]
for policy search. The two-part neural network is trained in
an end-to-end fashion, which is generally believed to yield
better empirical performance but on the other hand prohibits
any theoretical analysis. AIS can be considered as a state-
of-the-art algorithm for policy search in POMDPs; however,
the RNN employed there is heuristically assumed to satisfy
Definition 1 whereas Algorithm 1 rigorously does so as
formalized in preceding sections. As for the vanilla Actor-
Critic baseline, we simply treat the observation of the agent
as the state of the system, without devoting any additional
effort to take care of the partial observability. This scheme
inevitably leads to sub-optimal performances, but can still be
used as a meaningful comparison baseline.

We evaluate the performances of the algorithms on three
POMDP tasks: (i) CartPole [28] with superficial disturbance
in the observations, (ii) Tiger [29], and (iii) LightDark [30],
which are next described in detail.
Task Descriptions. In the original CartPole task, a pole is
attached to a cart through a joint. The task is to apply an
appropriate horizontal force to the cart to prevent the pole
from falling. The observation in this task is 4-dimensional,
and each of the 4 dimensions represents, respectively, the
cart position, the cart velocity, the pole angle, and the pole
angular velocity. In our experiments, we modify this task into
a partially observable one by manually removing the cart
velocity from the observations, leading to a 3-dimensional
observation space. A unit reward is given for every time
step that the pole remains standing (up to 15 degrees from
being vertical).

In Tiger, the agent stands in front of two closed doors and
decides which door to open. Behind one door is a tiger with
a negative reward and behind the other is a treasure. Instead
of opening a door immediately, the agent can also choose to
listen for the tiger noises and locate the tiger, but listening is
neither accurate nor free (a small negative reward is given).
This task is inherently partially observable because the agent
never has a direct observation of the environment state (i.e.,
the location of the tiger).

In LightDark, the agent has to locate itself in the plane
along its way to reach a certain destination. The agent has a
noisy sensor whose accuracy depends on the brightness of its
current location. The illumination condition varies spatially
in the plane, and the agent needs to move to a brighter place
first to be able to better localize itself. A unit negative reward
is given for every time step that the agent remains away from
the destination by a certain radius. In our simulations, we use
a one dimensional variant of the original LightDark task.
Again, this task is inherently partially observable because
the agent never obtains an accurate estimation of the state
(its location).
Parameter Selection. For SISE, Algorithm 1 is implemented
using an Echo State Network (ESN) with a hidden layer
of size 16. We set the leaking factor in (6) to be β = 0.2,
and the number of calls to the simulator as N = 3000 and
L = 200. We use the Smooth L1-Norm as the kernel function
K. The learned information states are then fed into an Actor-
Critic algorithm for policy search. The actor is instantiated
using a two layer fully connected neural network with a
hidden layer of 16 neurons. The output size of the actor
network is equal to the dimension of the action space. This
output can be interpreted as the mean vector of a multivariate
normal distribution, where the action to be taken is sampled
from this distribution with an identity covariance matrix. The
value network is a two layer fully connected network with
a hidden size of 16 and an output size of 1. We iterate
between estimating the information states (Algorithm 1) and
policy search (Algorithm 2) for 5 times to ensure that the
policy used for sample collection is consistent with our
behavioral policy. We use the ADAM optimizer [31] with a
learning rate 0.05 for the ESN training, ADAM (0.005) for



(a) CartPole (b) Tiger (c) LightDark

Fig. 1. Rewards of the three algorithms on (a) CartPole, (b) Tiger, and (c) LightDark, respectively. Shaded areas denote the standard deviations of
rewards. Note that SISE attains competitive performance with the benchmarks as the number of episodes increases, and in some cases outperforms them,
as quantified by the accumulated reward.

the actor network, and ADAM (0.05) for the value network.
All activations used in our simulations, including fx in (6),
are Rectified Linear Unit (ReLU) [32] functions. The AIS
algorithm is implemented in the same way as defined in [9],
with one difference that we replace the categorical sampling
of actions with a multivariate normal sampling to handle the
continuous action space. The vanilla Actor-Critic algorithm
is implemented similarly as the policy search part in SISE,
except that it uses the present observation as the input to the
policy network instead of a learned information state.

The simulation results are presented in Figure 1. The
length of each episode is set to be 200 in CartPole, 20 in
Tiger, and 40 in LightDark, as per the individual structure
of each task. All results are averaged over 40 runs. We can
see that SISE nearly matches the performance of AIS on
the tasks of CartPole and Tiger, and outperforms AIS on
LightDark. We believe that the performance difference in
LightDark is due to the fact that LightDark is a continuous-
action task, but AIS was not originally designed for con-
tinuous action spaces. Compared to the other two tasks, an
additional challenge in LightDark is to explore the continu-
ous action space more efficiently, which SISE handles well
because it is designed to proactively collect samples in the
first phase (Algorithm 1). The vanilla Actor-Critic algorithm
achieves low rewards in all the three tasks. This is an
expected result because it is not explicitly designed to handle
partial observability. This result also illustrates the point that
simply treating the partial observations as information states
is generally not enough in partially observable environments,
and a certain type of memory or abstraction of the history
is necessary.

We would also like to remark that our approach permits
larger learning rates than AIS, as can be seen from Figure 1
that SISE converges faster on all the three tasks. With a
larger learning rate, a learning algorithm converges faster,
but this may cause instability in training. By contrast, smaller
learning rates yield improved limiting performance. Through
exhaustive experimentation, we manually-tuned the learning
rate of each approach for its individualized optimal per-
formance. SISE allows for larger learning rates than AIS

because upon beginning policy search (Algorithm 2), the
approximate information state (Algorithm 1) has already
converged for SISE, which allows training the policies more
aggressively. By contrast, since the information states and
policies are estimated simultaneously in the AIS approach,
errors in information states may detrimentally influence
policy search unless the step-size is sufficiently small.

VI. CONCLUSION

We considered the problem of policy search in continuous
state-action spaces under imperfect information. As main-
taining belief states is computationally intractable, we pro-
vided an alternate approach, using approximate information
states, to sequentially adapt representations of history that
are learnable, tractable and sufficient for decision making.
This representation is semi-parametric in the sense that the
conditional kernel density estimation is non-parametric, but
is used as a target for fitting a recurrent neural network
(RNN), which is a parametric representation. For this ap-
proximate information state MDP, we provided an Actor-
Critic algorithm and analyzed the convergence properties.
We also showed that the developed joint search procedure
(alternate history representations & policy optimization over
these representations) not only has theoretical guarantees, but
empirically is competitive with the state-of-the-art.
It is of interest to consider the non-asymptotic analysis of
alternating minimization based algorithms developed in this
paper. Also, we considered the convergence of non-convex
policy search procedures to stationary points only. It is of
interest to establish the global convergence of joint search
procedures.
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SUPPLEMENTARY MATERIAL FOR
“SEMIPARAMETRIC INFORMATION STATE EMBEDDING

FOR POLICY SEARCH UNDER IMPERFECT INFORMATION”

VII. DEFINITIONS

Definition 3 (Minimum Risk). Let L ∈ L, where L denotes the class of loss functions. With E(·) denoting the expectation
w.r.t data distribution, we define minimum risk of (11) as

R∗(L) = inf
L∈L

E(L ). (27)

Definition 4 (Rademacher Average). Let Q ⊂ RN with Q bounded. The Rademacher Average of Q denoted by RN(Q) is
given as

RN(Q) = E
(

sup
q∈Q

∣∣∣ 1
N

N

∑
i=1

εiqi

∣∣∣), (28)

where εi = {−1,+1} are discrete uniform random variables.

VIII. PROOFS OF MAIN RESULTS

Theorem 4. We first establish the following result that is required in the proof of the theorem.

Lemma 1. With probability atleast 1− γ , the empirical risk E(L (δ ∗)) can be bounded as

E(L (δ ∗)) = R∗(L)+O(
1√
N
), (29)

where R∗(L) denotes the minimum attainable risk within the (loss) function class L.

Lemma 1. By [33, Corollary 6.1], we have with probability at least 1− γ:

E(L (δ ∗))≤ R∗(L)+4E(RN(L(δ ∗)))+

√
2log( 1

γ
)

N
(30)

By Dudley’s Theorem [34], [35], we have

E(RN(L(δ ∗)))≤ 12
√

π

2
·
√

d
N
, (31)

where d denotes the (linear algebraic1) dimension of the observation space O ⊆ Rd. The result follows.

For the proof of Theorem 4, we have the following:

dTV ( f (o|I ,u), f (o|h,u))≤ dTV ( f̂N(o|I ,u), f (u|I ),u)+dTV ( f̂N(o|I ,u), f (u|h,u)) (32)

Using Pinsker’s Inequality for the last term:

dTV ( f (o|I ,u), f (o|h,u))≤ dTV ( f̂N(o|I ,u), f (o|I ,u))+

√
1
2

DKL( f (o|h,u), f̂N(o|I ,u)) (33)

Maximizing over δ , from (11),

dTV ( f (o|I ,u), f (o|h,u))≤ dTV ( f̂N(o|I ,u), f (o|I ,u))+

√
ξo

2
max

δ

Lo(δ ) (34)

⇒ for some ξ , dTV ( f (o|I ,u), f (o|h,u))≤ dTV ( f̂N(o|I ,u), f (o|I ,u))+

√
ξ

2
max

δ

L (δ ). (35)

Using definition of total variation distance, we have

dTV ( f (o|I ,u), f (o|h,u))≤ 1
2

∫ ∫
| f̂N(o|I ,u)− f (o|I ,u)|doP(du ·dI )+

√
ξ

2
L (δ ∗) (36)

Considering a distribution over data, and using Fubini’s theorem we have

dTV ( f (o|I ,u), f (o|h,u))≤ 1
2
E
(∫ ∫

| f̂N(o|I ,u)− f (o|I ,u)|doP(du ·dI )
)
+E
(√1

2
L (δ ∗)

)
(37)

1There are d linearly independent vectors in Rd



By Jensen’s inequality,

dTV ( f (o|I ,u), f (o|a,h))≤ 1
2
E
(∫ ∫

| f̂N(o|I ,u)− f (o|I ,u)|doP(du ·dI )
)
+

√
ξ

2
E
(
L (δ ∗)

)
(38)

dTV ( f (o|I ,u), f (o|h,u))≤ C
2
·N

−ρ1
ρ1+(u+a) +

√
ξ

2
E
(
L (δ ∗)

)
(39)

Choosing εo(N,δ ∗) = C
2 ·N

−ρ1
ρ1+(u+a) +

√
ξ

2E
(
L (δ ∗)

)
, and using Lemma 1 the result follows.

Theorem 1. The proof follows from arguments similar to [19, Theorem 4.4] and [36, Theorem 5], and is omitted for
brevity.

Theorem 2. The proof follows from arguments similar to Theorem 2 and Corollary 2 in [24], and is omitted for brevity.

Theorem 3. The proof follows using similar arguments as in [25, Theorem 3], and is omitted for brevity.


