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ABSTRACT

We consider expected risk minimization for strongly convex
costs for the case that the decision variable belongs to a Reproduc-
ing Kernel Hilbert Space (RKHS) and its target domain is required
to be nonnegative. This arises, e.g., in intensity estimation of in-
homogeneous point processes. To solve it, we develop a variant
of stochastic mirror descent that employs (i) pseudo-gradients and
(ii) projections. Compressive projections are executed via kernel
orthogonal matching pursuit (KOMP), which overcomes the fact
that RKHS parameterizations grows unbounded with time. More-
over, pseudo-gradients are needed, e.g., when stochastic gradients
themselves define integrals over quantities that must be evaluated
numerically. We derive accuracy/complexity tradeoffs between
convergence in mean and bounds on the model complexity of the
learned functions under standard assumptions. Experiments then
demonstrate favorable tradeoffs for inhomogeneous Poisson Process
intensity estimation on real data.

1. INTRODUCTION

Nonnegative function fitting arises trajectory optimization [2], as
well as unsupervised [3] and supervised learning [4] for costs as-
sociated with a negative log-likelihood. In this work, we consider
the nonnegative function estimation problems where the cost is
strongly convex and depends on sequentially observed samples from
an unknown distribution, and the feasible set is a reproducing kernel
Hilbert Space (RKHS) [5]. Our main motivation is efficient estima-
tion of the intensity of an inhomogeneous Poisson Process [6].

For the moment, let’s set aside non-negativity and suppose the
function class is defined by a linear statistical model. Then, the prob-
lem reduces to a convex program, which, when analytical solutions
are unavailable, may be solved with Newton or gradient methods to
global optimality, assuming the gradient is computable [7] . How-
ever, doing so breaks down for costs that depend on sequentially
observed samples [8], as in expected risk minimization. In this case,
stochastic approximations are necessary [9], which use stochastic
gradient updates, and whose performance is tethered to the proper-
ties of the unknown data distribution. Moreover, one may only guar-
antee their performance probabilistically [10]. Here we put forth a
stochastic variant of proximal gradient [11], i.e., stochastic mirror
descent, which employs Bregman divergences to refine the conver-
gence of first-order stochastic methods for structured problems [12].

The strength of guarantees for linear models belies the fact that
they are outperformed by deep neural networks (DNNs) [13] and
kernel methods [14] across disparate domains [15]. We focus on
RKHS since (i) under suitable choice of kernel, they may be equiv-
alent to certain DNNs [16]; (ii) their training defines a convex pro-
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gram over a RKHS [17]; and (iii) one may impose structural hy-
potheses through choice of kernel or Bregman divergence [6, 18].
Unfortunately, via the Representer Theorem [19], their complexity
scales with the sample size, which may be large-scale. Myriad ap-
proaches exist for RKHS approximations: matrix factorization [20],
spectral methods [21, 22], random feature techniques [23–25], and
subspace projections [26,27]. Notably, fixing the projection-induced
error rather than model complexity is favorable both in theory and
practice [28], and hence we adopt it to sparsify RKHS updates.

We focus on nonnegative functions, as is inherent to the in-
tensity of an inhomogeneous point processes [6, 29], unsuper-
vised/supervised learning when the cost is a negative log-likelihood
[12], and trajectory optimization [2]. Two intertwined challenges
then emerge: constraint satisfaction, and gradient evaluation. Suit-
able initialization and specifying the divergence as the I-Divergence
(or KL [30]) ensures iterates exhibit nonnegativity. However, the
stochastic gradient itself may require evaluation of an unknown inte-
gral [31]. In this case, pseudo-gradients [32], i.e., descent directions
correlated with true gradients, may be employed to positive effect,
that is, pseudo-mirror descent has recently achieved the state of the
art in point processes intensity estimation [31]. However, doing
so results in a function sequence exhibits intractable complexity
growth with time. In this work, we overcome this issue by designing
projected variants (Sec. 3), whose tunable tradeoffs between conver-
gence accuracy and complexity we theoretically characterize (Sec.
4). Further, outperform existing approaches on a Poisson Process
intensity estimation problem on a real NBA data set (Sec. 5).

2. PROBLEM FORMULATION

Consider the problem of expected risk minimization in the online
setting: independent identically distributed (i.i.d.) training samples
{xt}t≥1 are observed in a sequential manner, where xt ∈ X ⊂ Rd.
The goal is to fit a predictive model f that belongs to the hypothesis
spaceH. The target domain is defined by a likelihood model, which
induces a loss function `(f(x)), typically defined as the negative
log-likelihood of a probabilistic model, which we seek to minimize
in expectation over an unknown distribution P(x), i.e., R(f) :=
E[`(f(x))], as may be specified by the stochastic program

f? = arg min
f∈H+

R(f) (1)

where R(f) is λ-strongly convex. For ease of notation, from now
onwards, we write the instantaneous costs as rt(f) := `(f(xt))
corresponding to the data point xt. We further denote the class of
functions with nonnegative range as H+, which we hypothesize is
a subset of a Hilbert space H associated with symmetric positive
definite kernel κ which satisfies (i) H := span(κ(x, ·)); and (ii)
〈f, κ(x, ·)〉 = f(x) for all x ∈ X . That is, every f ∈ H can be
written as linear combination of the kernel evaluations and satisfy the
reproducing property, makingH a reproducing kernel Hilbert space
(RKHS) [5]. Examples kernels include the Gaussian κ(x,x′) =



exp(−‖x− x′‖2 /2c) and polynomial κ(x,x′) = (x>x + b)c as
well as sophisticated data-dependent convolutional kernels [33].

With the problem setting and the function class over which we
search made clear, we expand upon implications of the restriction
that the range of the functions f is nonnegative. As mentioned, non-
negativity inherently arises in probability density function (pdf) es-
timation and intensity estimation, which we introduce next.

Example 1. Poisson Point Process intensity estimation: Poisson
Processes are a family of probabilistic models that counts the num-
ber of events N(T ) up to an interval T ⊂ S ⊂ Rd, which are
widely used in spatial statistics [29], time-series [3], and queue-
ing [34]. A fundamental question that arises in its use is the in-
tensity parameter λ(·), which determines the rate λ(s) at which
new events occur in an infinitesimal time-increment, i.e., λ(s) =
lim∆s→0 E[N(∆s)]/(∆s). In inhomogeneous cases, this parame-
ter varies with its argument as a nonlinear function, where the likeli-
hood of a collection of Poisson points {tn}Nn=1 takes the form:

L(f) =
N∏
n=1

λ(tn) exp

{
−
∫
S
λ(t)dt

}
(2)

Then, one may construct an instantiation of (1) by considering the
negative log-likelihood of (2), inspired by [6]:

R(f) = −
N∑
n=1

log(λ(tn)) +

∫
S
λ(t)dt (3)

where one may identify that the Poisson points tn play the role of
xn, and λ(·) is the known function f(·) we seek to estimate, which
is required to be nonnegative. This problem has been studied in the
offline and online settings, i.e., when {tn}Nn=1 are available all at
once or in an incremental fashion, respectively, in [6] and [31]. In
this work, we develop online approaches to developing sparse solu-
tions to (3). Further derivation details may be found in [3]

We focus on solving (1) via search directions that move in the
interior of the (generalized) probability simplex. First, we close the
section with a clarifying remark about the complexity of RKHS.

Remark 1. (Empirical Risk Minimization)An important special
case of (1) is empirical risk minimization (ERM) where a fixed col-
lection of data D := {(xi)Ni=1} is available, and we seek to find the
optimizer of the empirical loss f̂N = arg minf∈H

1
N

∑N
m=1 ri(f)

Observe that f̂N in the search space is a Hilbert space, and hence
is infinite-dimensional. The Representer Theorem [35, 36] implies,
however, that f̂N takes the form: f̂N (·) =

∑N
m=1 wmκ(xm, ·)

where {wm}Nm=1 are scalar weights, which via substitution into the
empirical loss, simplifies search overH to RN :

ŵN = arg min
w

1

N

N∑
i=1

`(w>kD(xi)) , (4)

where we have collected kernel evaluations {κ(xm,xn)}m into
a vector called the empirical kernel map kD(xm) ∈ RN and
{κ(xm,xn)}m,n into the Gram, or kernel, matrix KDD ∈ RN×N .
As the sample size N →∞ grows, the dimensionality of the search
space RN grows as well, an instance of the curse of kernelization.
Therefore, it is not enough to solve (1) to optimality, but one must do
so while also ensuring the complexity M of the function represen-
tation in terms of wm and xm is efficient as well, i.e., the M � N .
We precisely define the model order M , in later sections.

3. ALGORITHM FORMULATION

Now we shift focus to deriving an iterative approach to solving (1)
based upon functional extension of mirror descent [12]. We employ
specific choice of Bregman divergences that ensure positivity of the
range of the function f during optimization, as well as generalization
of the gradients employed in the updates to “pseudo-gradients” put
forth in [31], which are useful in point process intensity estimation.
Bregman Divergence We begin by presenting technicalities pertain-
ing to the Bregman divergence and mirror map before deriving the
proposed algorithm. Let ψ : H → R be a proper, closed, smooth,
and strongly convex functional. The Frenchel conjugate of ψ is de-
noted as ψ∗ : H∗ → R, where H∗ is the dual space of H. Define
the shorthand for the objective evaluated at the gradient of the dual
Rψ(z) = (R ◦ ∇ψ∗)(z) = R(∇ψ∗(z)) where z ∈ H∗. This com-
position allows one to write∇Rψ(∇ψ(f)) = ∇R(f), f ∈ H since
∇ψ∗ = (∇ψ)−1. This identity is used to establish convergence.
The purpose of defining functional ψ is that it induces a distance-
like functional Bregman divergence Bψ : H×H ⇒ R [37]:

Bψ(f, f̃) := ψ(f)− ψ(f̃)− 〈∇ψ(f̃), f − f̃〉H. (5)

The functional Bregman divergence satisfies most of the properties
of its vector-valued counterpart: non-negativity, strong-convexity
in the first argument, and a generalized Pythagorean theorem.
A few common examples are Squared difference, Squared Ma-
halanobis difference and KL-divergence or I-divergence – see
[37]. In this paper, we restrict focus to the KL-divergence or I-
divergence, whose convex map ψ(f) = 〈f, log(f) − 1〉H and
Bψ(f, f̃) = 〈f, log(f/f̃)〉H.
Pseudo-Gradient We shift to defining search directions for the ob-
jective (1) called pseudo-gradients: directions gt that have positive
(unnormalized) cosine similarity with gradient ∇fR(f) in expec-
tation [32] (any direction forming an acute angle with the original
gradient∇R(ft) in the dual space):

〈∇R(ft),E[gt|Ft]〉 ≥ 0 (6)

where Ft denotes the past sigma algebra which contains all the past
data points one iteration back, i.e. Ft = σ{xi}t−1

i=1 , which may be
employed when evaluating the exact gradient is possibly unavailable.
Stochastic Gradients, Kernel embeddings and Gradient sign are ex-
amples, whose specific forms are omitted due to spatial constraints.

With Bregman divergence and pseudo-gradients defined, we
shift to presenting our algorithmic solution to solving (1) via stream-
ing samples {xt}, which is built upon a functional generalization

of stochastic mirror descent: ft+1 = arg min
f∈H

(
〈∇rt(ft), f〉H +

1
η
Bψ(f, ft)

)
,where η is a nonnegative constant step-size. Note that

for squared difference,Bψ(f, f̃) = 1
2
‖f−f̃‖2, this reduces to func-

tional stochastic gradient method. For this update to be tractable, we
require evaluation of Bregman divergence in closed-form.

We propose the use of pseudo-gradients gt in lieu of stochastic
gradients∇rt(ft) in mirror descent, which, for instantaneous loss is
at function iterate ft with data points xt, Functional Pseudo Mirror
Descent (FPMD) takes the form:

f̃t+1 = arg min
f∈H

(
〈gt, f〉H +

1

η
Bψ(f, ft)

)
. (7)

This update, which lives in a Hilbert space, may be executed para-
metrically in some instances. To see this, define z̃t+1 = ∇ψ(f̃t+1)
and zt = ∇ψ(ft), which implies ft = ∇ψ∗(zt). For general



pseudo-gradients, i.e. when gt 6= ∇rt(ft), one may not easily find a
parametric form for ft by inverting the Bregman divergence. 1 How-
ever, for differentiable pseudo-gradients, we have gt = g′tκ(xt, ·)
(via the chain rule and reproducing property of the kernel). The
specific g′t depends on whether the pseudo-gradient is defined by,
e.g., a kernel embedding, gradient sign, or stochastic gradient (g′t =
`′(∇ψ∗(zt(xt))) ). Thus, one may execute (7) as

z̃t+1 = zt − g′tκ(xt, ·) (8)

with corresponding dictionary and weight updates:

Dz,t+1 =Dz,t∪{xt} , [wz,t+1]n=

{
[wz,t]n xn∈Dt
−ηg′t xn=xt

(9)

whereDz,t+1 represents the set of dictionary points for function z̃t+1

and [wz,t]n denotes the n-th coordinate of the vector wz,t. Due to
the RKHS parameterization in terms of weights and feature vectors
xt, the complexity of the z̃t+1 grows unbounded with time t. We
address this issue via subspace projections greedily constructed with
kernel orthogonal matching pursuit (KOMP) [26, 38]. Specifically,
given an input dictionary D̃z,t+1 and weight vector w̃z,t+1, returns
lower-dimensional (compressed) dictionary and weights

{zt+1,Dz,t+1,wz,t+1}=KOMP(̃zt+1,D̃z,t+1,w̃z,t+1, ε) (10)

that are ε-away in the RKHS norm, where ε denotes the compres-
sion budget, which we call SPPPOT: Sparse Positive Functions via
Projected Pseudo-Mirror Descent. Here use of KOMP differs from
[28]: the RKHS-norm approximation is in terms of the dual space
via auxiliary sequence {zt} (8).

Moreover, function f at x ∈ X at time t+ 1 is given as

ft+1(x) = ∇ψ∗(zt+1(x)) = ∇ψ∗(w>z,t+1kDz,t+1(x)) (11)

which takes the form ft+1(·)=exp(w>z,t+1kDz,t+1(·)) for KL Diver-
gence. Crucial to our approach is the range of the exponential: if
f0 is initialized as positive, and with projections due to KOMP ex-
ecuted on the dual space, then positivity is preserved via (11). Next
we discuss the convergence of (10).

4. CONVERGENCE AND COMPLEXITY ANALYSIS

We now present the conceptual aspects of (10) for solving (1) for
a fixed compression budget ε and step-size η. The pseudo gradient
is expressed as gt = 1

η
(zt − z̃t+1), whereas the projected pseudo-

gradient ĝt := 1
η

(zt−zt+1) is obtained by the application of KOMP
on the auxiliary function z̃t+1. Hence the projected auxiliary func-
tion iterates becomes zt+1 = zt−ηĝt. To establish the convergence,
we require the following technical conditions.

A1. The inner product between the gradient and the expectation of
the pseudo-gradient given the filtration Ft = σ({xi}t−1

i=1), is lower
bounded by the second-moment of the gradient in the dual norm for
positive constant D:

E[〈∇R(ft),E[gt|Ft]〉] ≥ DE[||∇R(ft)||2∗] (12)

A2. The problem (1) has finite solution with ‖f?‖2 ≤ B.

A3. The instantaneous and average costs R are λ-strongly convex.
1For future reference, we also comment that {zt} ⊂ H∗, i.e., zt is an

element of the dual spaceH∗ of the RKHSH.

A4. The function Rψ(·) is L1-Lipschitz smooth.

A5. For all f ∈ H, t ∈ N, and some c ≥ 1, the instantaneous
gradient∇rt(f) is unbiased and has variance bounded by

V [∇rt(f)] = E‖∇rt(f)−∇R(f)‖2 (13)

≤ σ2 + (c− 1) ‖∇R(f)‖2 (14)

A1 ensures that this angle can be no worse than 90 degrees,
where the constant D determines how correlated these gradients are
in the worst-case. A2 is employed to ensure that R(f0) − R(f∗)
is finite. A3 implies that P-L condition holds. A4 is standard in the
analysis of mirror descent, operator splitting, and proximal meth-
ods. Moreover, A5 permits us to establish boundedness of the pro-
jected pseudo-gradient. We continue by first observing that Assump-
tion A5 is weaker than that of gradient boundedness, and implies
V [∇rt(f?)] ≤ σ2 and E‖∇rt(f)‖2 ≤ σ2 + c ‖∇R(f)‖2. For the
sake of brevity, we also use the notation Γt := E‖∇R(ft)‖2∗. With
these conditions, we are ready to state our main result.

Theorem 1. Under Assumptions A1-A5, upon running SPPPOT for
t + 1 iterations, the objective sub-optimality attenuates linearly up
to a bounded neighborhood when run with constant step-size η <
min( 1

q1
, q1
q2

) and compression ε = αη,

E[R(ft+1)−R(f∗)] ≤ (1− ρ)tE[R(f0)−R(f∗)] (15)

+
1

ρ

[
L1η

2σ2 +
(ηω1

2
+ L1η

2
)
α2
]

Further, the iterates under the same conditions satisfy:

E[‖ft+1 − f∗‖2] ≤ 2

λ
(1− ρ)tE[R(f0)−R(f∗)] (16)

+
2

λρ

[
L1η

2σ2 +
(ηω1

2
+ L1η

2
)
α2
]

where ρ = q1η − q2η2 with q1 = 2λ
(
D − 1

2ω1

)
and q2 = 2λcL1,

D is the correlation constant in A1, and ω1 is a positive constant
satisfying ω1 >

1
2D

.

Theorem 1 characterizes the trade-off between the rate of the
convergence and the asymptotic radius of convergence. First note
that regardless of the choice of η and t, the mean distance from the
optimum will always be O(α2) in the worst case. The bound in
(16) is for ε > 0, which causes the additional α2 to appear. For
ε = 0, the α2 term of (16) vanishes, and thus simplifies to O(ησ2)
asymptotically as ρ is approximately of order η overall given η < 1.

Relative to [31][Theorem 6], our convergence result holds under
comparable conditions, but incorporates the additional aspect of the
parameterization efficiency/rate of convergence tradeoffs associated
with sparse projections. Specifically, for ε = 0 our result simplifies
to the aforementioned result, but requires an RKHS parameterization
that grows unbounded with the time index t due to (9).
Parameterization Complexity Next we analyze the complexity of
the function parameterization of SPPPOT for fixed compression ε >
0. To do so, we need additional two assumptions.

A6. The pseudo-gradient expressed as gt = g′tκ(xt, ·), always has
scalar g′t bounded by a positive constant: |g′t| ≤ C

A7. The feature space X ⊂ Rd is compact.

With A6 and A7, analogous logic of [28][Theorem 3] implies the
following as a corollary.
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Fig. 1: We compare a BFGS solver for an offline MLE problem [6] as well as existing incremental techniques which do not incorporate
complexity-reducing projections, i.e., stochastic Pseudo-mirror descent (PMD) [31] on the NBA dataset of Stephen Curry. This data shot
distances as data samples x ∈ R. Shot distances less than 40 are taken and the data is normalized. SPPPOT yields a state of the art accuracy
and complexity tradeoff for quickly fitting the intensity parameter of this inhomogeneous Poisson Process.

Corollary 2. Denote as Mt the model order, or number of elements
xt in the dictionary associated with dual function zt at time t. Then,
we have that Mt ≤ M∞, where M∞ is the maximum model order
possible. Moreover, M∞ satisfies

M∞ ≤ O
(

1

ε

)d
(17)

This establishes the complexity tradeoffs associated with differ-
ent compression parameter selections. In the next section, we exper-
iment with (10) on a real problem.

5. EXPERIMENTS

We now shift to validating SPPPOT for estimating the intensity func-
tion f(·) of an inhomogeneous Poisson Process, which we compare
with an offline batch BFGS method using quasi-Newton [6] and also
with existing state of the art stochastic Pseudo-mirror descent (PMD)
[31] (which executes no complexity reduction/dictionary point se-
lection). We conduct this experiment on the NBA dataset of Stephen
Curry as explained in the caption of Fig. 1. The implementation
of the BFGS algorithm is done using ’fminunc’ package in Matlab
that takes care of the algorithm step size and it has been taken as our
baseline since it is a batch algorithm. The function formulation for
BFGS is taken same as [6, Eq. (3.1)], i.e. f(·) = af ′(·)2 where
a is a positive scalar used for tuning and f ′(·) is a RKHS function
used for learning. BFGS and SPPPOT uses the loss (3) while PMD
is implemented using the loss same as [31, Eq. (8)]. Note that for
the PMD algorithm, the loss contains a term with optimal intensity
f∗ which is unknown and hence the loss evaluation for the real life
data set of Stephen Curry is not possible for PMD.
Parameter Selection We split data into 8298 training examples
and 1000 test samples. BFGS is ran on a single epoch of the data,
where as 10 epochs are being run for PMD and SPPPOT. For the
purpose of experiments, Gaussian kernel is taken with kernel band-
width 0.0025. The constant a for BFGS is taken to be 1 by cross
validation over randomly selected 1000 points from the train data.
The mini-batch size is taken to be 30 for both SPPPOT and PMD.
The step size η are taken to be 0.03 and 0.1 for SPPPOT and PMD
respectively by trial and error. The KOMP budget for SPPPOT is
fixed at ε = 10−5 so that model order matches with the number of
uniform grid points for PMD. Note that the 100 points kept in the
dictionary for SPPPOT are the 100 uniform grid points only. If re-

quired one can opt for a higher model order by reducing the budget
where some Poisson point will also be kept.
Results The training loss, the estimated probability density func-
tion (pdf), i.e., intensity, and the model order are given in Figs. 1a,
1b, and 1c, respectively. Observe that the stochastic gradient be-
longs to the probability simplex due to gradient averaging. Hence
the function learnt using PMD and SPPPOT are preserve feasibility,
whereas the one obtained using BFGS has to be normalized with the
number of training data points to obtain a density. Moreover, BFGS
took about 5 hours to compute, as compared with online approaches:
PMD and SPPPOT finished 10 epochs in about 7 minutes. This run-
time difference is reflected in the model complexity difference in 1c.
Moreover, SPPPOT outperforms the batch solver after a few training
epochs (Fig. 1a), and yields a pdf much closer to the offline baseline
BFGS compared to the previous online approach PMD that does not
incorporate sparse projections for point selection.

6. CONCLUSION

We studied strongly convex expected risk minimization problems
when the decision variable belongs to a Reproducing Kernel Hilbert
Space (RKHS) and its target domain is required to be nonnegative,
motivated by in intensity estimation of inhomogeneous point pro-
cesses. We put forth a variant of stochastic mirror descent that em-
ploys (i) pseudo-gradients and (ii) projections. Compressive projec-
tions are executed via kernel orthogonal matching pursuit (KOMP),
which overcomes the fact that RKHS parameterizations grows un-
bounded with time. We established accuracy/complexity tradeoffs
between convergence in mean and bounds on the model complexity
of the learned functions under standard assumptions. Experiments
outperformed state of the art techniques for inhomogeneous Poisson
Process intensity estimation on real data. Future directions include
scaling these approaches to higher dimensions through convolutional
kernels, as well as the use of event-triggers and censoring techniques
for communication-efficient networking/actuation mechanisms.
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