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ABSTRACT

This paper presents and analyzes constant step size stochastic gradi-
ent algorithms in reproducing kernel Hilbert Space (RKHS), which
encapsulates various adaptive nonlinear interpolation schemes. The
hyperparameters of the function iterates are updated via a distribu-
tion that depends on the estimates generated by the algorithm. Using
stochastic averaging theory, we show that the estimates genertated
by the algorithm converge weakly to an algebraically constrained
ordinary differential equation. We illustrate this proposed algorithm
in an online multi-class classification problem. Speficially, the pro-
posed RKHS-valued stochastic gradient algorithm operating in con-
cert with a Gaussian kernel whose bandwidth stably evolves during
training, performs comparably to when the bandwidth is set accord-
ing to oracle knowledge of its optimal value.

Index Terms— Online learning, Bayesian learning, Stochastic
optimization, averaging theory, algebraic-constrained ODE

1. INTRODUCTION

We consider convex expected-value minimization over an unknown
distribution [1] where the feasible set is a reproducing kernel Hilbert
Space (RKHS) [2]. Our main innovation is a variant of functional
stochastic gradient method, where hyperparameters such as the ker-
nel bandwidth [3] or basis points [4, 5] adapt incrementally during
training. This introduces statistical dependence between parameters
and hyperparameters, which under standard hypothesizes, via dy-
namical systems analysis of stochastic approximation [6], yields an
algorithm that converges in distribution.

This paper considers stochastic optimization over a Hilbert
space. What convex optimization over Euclidean space gains in
terms of strength of conceptual guarantees is experimentally sur-
passed by nonlinear models across computer vision [7], natural
language processing [8], and autonomous control [9]. We model
nonlinearity using RKHS as doing so yields a convex program over
a Hilbert space [10], gaining in representational power without the
numerical challenges of non-convexity. Moreover, under suitable
choice of kernel, they coincide with DNNs [11]. Unfortunately,
the increased power of nonlinearity brings challenges of hyperpa-
rameter search. Specifically, hyperparameters significantly impact
performance, and finding good selections in practice is nontrivial.
Classical approaches such as cross validation [12] and grid/random
search [13] fix them before training.

Evolving hyperparameters during training originally appeared
as heuristic random search in genetic algorithms [14]. More mod-
ern approaches have instead considered formulations via Bayesian
inference [15, 16] or multi-armed bandits (MAB) [17, 18]. The for-
mer typically necessitates prior/posterior conjugacy and likelihoods

to be from a log-concave family, beyond which it devolves into non-
convex stochastic search [19]. The later focuses only on the evolu-
tion of hyperparameters, and treats the parametric updates as solely
capturable by a black box reward [20, 21].

By contrast, here we propose to evolve both parameters and
hyperparameters online interdependently via functional SGD in tan-
dem with hyperparameter updates chosen via a distribution over the
current iterate and samples (Sec. 3). We call this scheme Bayesian
Nonparametric Estimators with Adaptive Hyperparameters, or
BARRETTE. Notably, in Sec. 5, BARRETTE on a multi-class ker-
nel SVM classification problem with a Gaussian kernel whose the
bandwidth evolves via a likelihood model [3] on a synthetic data [22]
yields performance gains relative to fixed bandwidth approaches.

At a technical level, we emphasize that the stochastic gradient
algorithm that we propose has an interesting structure: it converges
weakly to an algebraically constrained differential equation for con-
stant step-size selection (Theorem 1) under standard conditions (As-
sumption 1) in Sec. 4. Such dynamics are similar to that obtained in
game-theoretic learning [23,24]. This is quite different to the classi-
cal ODEs that arise from the stochastic averaging theory of gradient
algorithms such as LMS that is widely studied in signal process-
ing [25]. [6, 26].

2. PROBLEM DEFINITION

We consider the following stochastic optimization problem:

θ∗ = argmin
θ∈Θ

L(θ) :=argmin
θ∈Θ

Ex,y[`(θ(x), y,u)]+
λ

2
‖θ‖2H (1)

where λ > 0 is the regularization parameter. This corresponds to
a nonlinear stochastic ridge regression or classification problem in
Hilbert space; recall ridge regression adds a penalty l2 norm squared
term, namely λ

2
‖θ‖2H here, also called an Tikhonov regularizer. In

(1), we interpret realizations (xn, yn) of the random pair (x, y) as
training examples, i.e., feature vectors x ∈ X ⊂ Rp together with
target variables yn ∈ Y such as real values Y = R or binary labels
Y = {0, 1}, in the respective cases of regression or classification,
with z := (x, y). Moreover, `(θ(x), y,u) quantifies model fitness
of estimator θ : X → R, which is small when θ(x) and y are close.
Throughout, we assume that L(θ) is convex with respect to θ.

Moreover u ∈ Rd is a vector of control variables, which
may be interpreted as hyperparameters of a statistical model or
decisions that influence which data is observed next. When u is
fixed, then (1) reduces to the standard setting of supervised learn-
ing [27]. By contrast, here we focus on settings where we seek
to control the choice of u when it belongs to a finite discrete set
U = {umin, . . . ,umax} and it evolves according to a distribution



P(θ, z, ũ), i.e., u ∼ P(θ, z, ũ). In this way, {ut} evolves as a
Markov Chain over state space U .

Included in this formulation is the case that u ∼ P(r(θ(x), y, ũ))
where r(θ(x), y, ũ) is a model fitness criterion of θ(x) for pre-
viously chosen hyperparameters ũ. Importantly, then, one may
employ likelihood models that arise in bandwidth selection [28] or
inducing inputs [4,5] for kernel/Gaussian Process regression, whose
specific forms are deferred until later.
Reproducing Kernel Hilbert Space We now clarify the selection
of function class Θ. We hypothesize Θ is a Hilbert space, denoted
here as H. We assume in this paper that H is a separable Hilbert
space, i..e, H has a countable orthonormal basis. Elements of H
are functions, θ : X → Y , that admit a representation in terms of
elements of X when H has a special structure. In particular, equip
H with a unique kernel function, κ : X × X → R, such that:

(i) 〈θ, κ(x, ·)〉H = θ(x) for all x ∈ X , 5

(ii)H = span{κ(x, ·)} for all x ∈ X . (2)

where 〈·, ·〉H denotes the Hilbert inner product for H. We further
assume that the kernel is positive semidefinite, i.e. κ(x,x′) ≥ 0
for all x,x′ ∈ X . This type of function space is called reproducing
kernel Hilbert spaces (RKHS).

In (2), property (i) is called the reproducing property of the
kernel, and is a consequence of the Riesz Representation Theo-
rem [29]. Replacing θ by κ(x′, ·) in (2) (i) yields the expression
〈κ(x′, ·), κ(x, ·)〉H = κ(x,x′), which is the origin of the term
“reproducing kernel.” This property provides a practical means by
which to access a nonlinear transformation of the input space X .
Specifically, denote by φ(·) a nonlinear map of the feature space that
assigns to each x the kernel function κ(·,x). Then the reproducing
property of the kernel allows us to write the inner product of the
image of distinct feature vectors x and x′ under the map φ in terms
of kernel evaluations only: 〈φ(x), φ(x′)〉H = κ(x,x′). This is
commonly referred to as the kernel trick, and yields an efficient way
to estimate nonlinear functions.

Moreover, property (2) (ii) states that functions θ ∈ H are given
as a basis expansion over kernel evaluations. For the sample average
approximations (SAA) of (1) with sample size N , the Representer
Theorem [30, 31] yields that the optimal θ in the function classH is
given as an expansion of kernel evaluated only training examples

θ(x) =

N∑
n=1

wnκ(xn,x) . (3)

where w = [w1, · · · , wN ]T ∈ RN denotes a set of weights. The
upper summand index N in (3) is henceforth referred to as the
model order. Common choices κ include the polynomial kernel and
the radial basis kernel (RBF), i.e., κ(x,x′) =

(
xTx′ + b

)c
and

κ(x,x′) = exp
{
− ‖x−x′‖22

2d2

}
, respectively, where x,x′ ∈ X . With

the setting clarified, we shift to defining our algorithmic innovation
in the following section.

3. STOCHASTIC GRADIENT ALGORITHM

We first present a stochastic gradient algorithm for the the kernelized
λ-regularized expected risk minimization problem in (1) as

θk+1 = (1− ηkλ)θk − ηt∇θ`(θk(xk), yk,uk) (4)

where ηt > 0 is an algorithm step-size either chosen as diminishing
with O(1/t) or a small constant. We further require that, given λ >

0, the step-size satisfies ηt < 1/λ and the sequence is initialized
as θ0 = 0 ∈ H. Given this initialization, by making use of the
Representer Theorem (3), at step k, the function θk is given as an
expansion in terms of feature vectors xk observed thus far as

θk(x) =

k−1∑
n=1

wnκ(xn,x) = wT
k κXk (x) . (5)

On the right-hand side of (5) we have introduced the notationXk =
[x1, . . . ,xk−1] ∈ Rp×(k−1) and κXk(·)=[κ(x1,·), . . . ,κ(xk−1,·)]T
Moreover, observe that the kernel expansion in (5), taken together
with the functional update (4), yields the fact that performing the
stochastic gradient method in H amounts to the following para-
metric updates on the kernel dictionary X and coefficient vector
w:

Xk+1 = [Xk, xk],

wk+1 = [(1− ηkλ)wk, −ηk`′(θk(xk), yk,uk)] , (6)

Observe that this update causes Xk+1 to have one more column than
Xk. We define the model order as number of data points Mt in
the dictionary at time t (the number of columns of Xk). FSGD is
such that Mk = t − 1, and hence grows unbounded with iteration
index k. We deal with this through a projection explained in more
detail in Section 5, motivated by its ability to trade off memory and
convergence [32].

Once the statistical model θ is updated based on the latest ob-
servations (xk, ytk given hyper-parameters uk [cf. (4)], we then
compute the long-run cost R̄k+1 of the choice ut with respect to
utility r(θk+1(xk), yk,uk) as

R̄k+1 = R̄k + r(θk+1(xk), yk,uk) (7)

Then, the hyper-parameters uk are updated according to a discrete
distribution P that depends on long-run costs R̄k+1:

uk+1 ∼ P(R̄k+1) (8)

Remark 1 (7), (8) are quite different to classical stochastic approx-
imation algorithms. The hyper-parameter process u is simulated
from a Markovian transition kernel that depends on the estimate R̄
from the algorithm; and the hyper-parameter feeds back into the
algorithm. Such stochastic approximation algorithms are used in
game-theoretic learning and yield interesting asymptotic dynamics.
see [23, 24] for an exposition. Special cases exist only for gradient
step-size selection in [33]

The state space for distribution P is U = {umin, . . . ,umax}. In
this way, the updates of ut define a sample path through a Markov
chain. The overall algorithm is the aggregation of (4), (7), and (8),
summarized as Algorithm 1. Next, we present a motivating example.
Example 1 (Bandwidth Adaptation) An example of selecting hy-
perparameters according to (7) - (8) is, assuming an RBF kernel with
bandwidth initialized as d0, to repeatedly update it at time t+1 with
a maximum likelihood step [3]

d2
t+1 =

1

Mt
(Mt−1)p

∑
n

1

ft(xn)

∑
m 6=n

‖xn−xm‖2κ(xn,xm) (9)

with probability p ∈ [0, 1] that is a function of θ(x) and dt. Of
course, every choice of kernel comes with different hyperparameters,
which give rise to different likelihood models that one may optimize.
The emphasis on RBF kernels here is meant for illustration, as well
as the fact that their use is akin to an uninformative prior about the
geometric structure of the feature space X , i.e., that it is locally flat.
The bandwidth determines the degree of locality in this hypothesis.



Algorithm 1 Bayesian Nonparametric Estimators with Adaptive
Hyperparameters (BARRETTE)

Require: {xk,yk, ηk}k=0,1,2,...

initialize θ0(·) = 0,D0 = [],w0 = [], i.e. initial dictionary,
coefficient vectors are empty
for t = 0, 1, 2, . . . do

Obtain samples (possibly depending on past) (xk, yk)
Compute functional stochastic gradient step

θk+1(·) = (1− ηkλ)θk − ηk`′(θk(xk),yk,uk)κ(xk, ·)
Dk+1=[Dk,xk];wk+1=[(1−ηkλ)wk,−ηk`′(θk(xk), yk,uk)]
Compute hyperparameters fitness r(θk+1(xk), yk,uk)
Update long-run cost R̄t with step-size γ as :

R̄k+1 = R̄k + γ(r(θk+1(xk), yk,uk)− R̄k)

Hyperparameters updated as uk+1 ∼ P(R̄k+1)
end for

We dedicate our numerical experiments to validating the pro-
posed approach for Example 1. Next, we shift focus to theoretically
characterizing Algorithm 1.

4. CONVERGENCE ANALYSIS

The aim of this section is to use the so-called ODE approach of [6] to
analyze the convergence of Algorithm 1. To do so, begin by consid-
ering the alternative representation of the increments of Algorithm 1
as an abstract sequence φk in the RKHSH at discrete step k

φk = (θk, R̄k) , Zk = (xk, yk, uk) , (10)

where we also define Zk as the stacking of realizations of train-
ing examples and hyper-parameters (xk, yk, uk). Further write the
RKHS sequence of Algorithm 1 abstractly as

φk+1 = φk + εkH(φk, Zk) (11)

Here we denote as εk > 0 an increment step-size that subsumes the
definition of ηk in (4) as well as how much the hyper-parameters uk
change across steps. Subsequently, we use the short-hand notation
Hk := H(φk, Zk).

We establish the asymptotic weak convergence of Algorithm 1
when the step size εk is a fixed constant. Weak convergence is a
function space generalization of convergence in distribution of ran-
dom variables defined next.
Definition 1 Consider a continuous time random process X(t), t ∈
[0, T ] which we will denote as X . A sequence of random processes
{X(n)} (indexed by n = 1, 2, . . .) converges weakly to X if for
each bounded continuous real-valued functional φ,

lim
n→∞

E{φ(X(n))} = E{φ(X)}.

Equivalently, a sequence of probability measures {P (n)} converges
weakly to P if

∫
φdP (n) →

∫
φdP as n→∞.

Note that the functional φmaps the entire trajectory ofX(n)(t), 0 ≤
t ≤ T of the random process to a real number.

Let T denote a positive real number which denotes the finite
time horizon. For t ∈ [0, T ], define the continuous-time piecewise
constant interpolated process parametrized by the step-size ε > 0 as

φε(t) = φk , Zε(t) = Zk for t ∈ [kε, (k + 1)ε) (12)

where φk and Zk are generated by the algorithm (10). Observe that
φε(·) ∈ D([0,∞) : H), namely the space of functions defined on
[0,∞) taking values inH equipped with kernel κ, such that the func-
tions are right continuous and have left limits endowed with the Sko-
rohod topology, and similarly forZk. Then, we impose the following
condition.

Assumption 1 Let Ek denote the σ-algebra generated by {Zl}l<k.
Ek{Hk}1+∆ < ∞ for some ∆ > 0. Also {Zk} is a bounded
stationary sequence and

1

N

N+l−1∑
k=l

Ek{Hk} → h(φ) in probability as N →∞ (13)

Assumption 1 is standard in stochastic approximation [6]. The
condition Ek{Hk}1+∆ < ∞ is sufficient for uniform integrabil-
ity which is crucial for weak convergence. Also, (13) is a weak
law of large numbers; the time-average 1

N

∑N+l−1
k=l Ek{Hk} con-

verges in probability. Observe that Assumption 1 permits us to work
with correlated sequences [6], and hence subsumes the examples of
i.i.d. realizations from a time-invariant distribution whose variance
is bounded [1], martingale difference sequences with finite second
moments, moving average processes driving by a martingale differ-
ence sequence, as well as mixing sequences in which remote past
and distant future are independent.

Next we define key quantities related to the limiting dynamics of
(12) as k → ∞. Specifically, denote the gradient of the regularized
objective as

h(θ,y,x, u) =
[
`′(θ(x),y, u)κ(x,x) .+ λ θ(x)

]
(14)

Further define the algebraically constrained ODE as

dθ

dt
= −

∫
X×Y

m∑
i=1

h(θ(x),y,x, i)πθ(dx, dy, i)

dR̄

dt
=

∫
X×Y

m∑
i=1

r(θ(x),y, i)πθ(dx, dy, i)− R̄

πθ(j) =

m∑
i=1

PR̄(j|i)πθ(i)

(15)

where πθ(dx, dy, i) is the stationary distribution of the Hilbert-
space-valued Markov process (xk, yk, uk). Then we may express
(15) as the following ODE system

dφ

dt
= h(φ), h(φ) =

∫
H(φ,Z)πφ(dZ)

With the dynamical systems (15) associated with Algorithm 1 de-
fined in terms of the succinct abstract sequence (10) - (11), we are
ready to state our main convergence result.

Theorem 1 Consider algorithm (11) with fixed step size ε. Suppose
that Assumption 1 holds and the system (15) has a unique solution
for each initial condition φ(0) = φ0 in which the uniqueness is in
the sense of distribution. Then the interpolated process φε converges
weakly to φ as k →∞ such that the limit satisfies (15).

Theorem 1, whose proof is deferred to an upcoming journal sub-
mission of this work, establishes that the interpolated process φε de-
fined by Algorithm 1 converges weakly, i.e., in distribution, to a φ
for each initial condition, as k → ∞. This means that the limiting
distribution induced by Algorithm 1 is a well-defined equilibrium for
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Fig. 1: Toy data (Fig. 1a) is used to conduct experiments on multi-class kernel support vector machine. BARRETTE (Algorithm 1),
by evolving its bandwidth during training, converges to a selection comparable to POLK initialized with oracle knowledge of the optimal
bandwidth (Fig. 1c). By contrast, with a hyperparameter mis-specification, POLK yields a fixed bandwidth over the course of training which
yields performance degradation. By contrast, BARRETTE’s evolving bandwidth is much more effectively able to minimize the multi-class
kernel logistic regression training objective despite a poor initial specification of its hyperparameter, as may be gleaned from Fig 1b.

the problem of minimizing θ over the RKHS (1) according to FSGD
(4) while its hyperparameters evolve via (8). Note, owing to strong
convexity, that equilibria in continuous time exactly correspond to
global optimizers of (1). We note that the convergence of stochastic
gradient algorithms on Hilbert spaces is studied in [34] and more re-
cently weak convergence for tracking Markovian hyper-parameters
on Hilbert spaces is analyzed in [35]. The study of their intertwined
evolution is the unique aspect of this work.

5. EXPERIMENTS

We consider the problem of training a multi-class kernel support vec-
tor machine (Multi-KSVM). : the target domain Y = {1, . . . , C} is
a set of classes, and the goal is to maximize the class specific classifi-
cation margin. Specifically, define a class specific activation function
fc;X → R and define them jointly as f ∈ HC . In Multi-KSVM,
the classifier is trained by consider the instantaneous loss function to
be the hinge loss defined as

`(f ,xn, yn) = max(0, 1 + fr(xn)− fyn(x)) + λ

C∑
c′=1

‖fc′‖2H,

where r = arg maxc′ 6=yn(xn) for the given data sample (xn, yn).
Further details about Multi-KSVM are provide in [36].

For the experiments, in a manner similar to [22], we generate the
multidist data set using a set of Gaussian mixture models. The
data set consists N = 5000 feature-label pairs for training and 2500
for testing. Each label yn was drawn uniformly at random from the
label set. The corresponding feature vector xn ∈ Rp was then drawn
from a planar (p = 2), equitably-weighted Gaussian mixture model,
i.e., x

∣∣ y ∼ (1/3)
∑3
j=1N (µy,j , σ

2
y,jI) where σ2

y,j = 0.2 for
all values of y and j. The means µy,j are themselves realizations
of their own Gaussian distribution with class-dependent parameters,
i.e., µy,j ∼ N (θy, σ

2
yI), where {θ1, . . . ,θC} are equitably spaced

around the unit circle, one for each class label, and σ2
y = 1.0. We fix

the number of classes C = 5, meaning that the feature distribution
has, in total, 15 distinct modes. The data points are plotted in Figure
1a.

We evaluate Algorithm 1 to learn Multi-KSVM for Gaussian
kernel with initialized bandwidth as 1, and evolves according to (9)
(Example 1) with the distribution in (8) chosen as a Bernoulli based

upon the sign of the gradient with parameter p = .9. In this way,
the evolution of the bandwidth belongs to a Markov Chain evolving
over this discrete set. We compare this with FSGD with constant
bandwidths σ ∈ {0.2, 1}. Note that since we generated the data in
Fig. 1a, we have oracle knowledge that the clusters have variance
0.2, and hence this is roughly the optimal selection for this prob-
lem instance. Both BARRETTE and FSGD employ the complexity-
reducing projections based upon matching pursuit with budget pa-
rameter ε = Kη3/2 with parsimony constant K = 0.04, which
for FSGD is referred to as POLK, short for Parsimonious Online
Learning with Kernels [32]. Both algorithms are run with constant
step-size η = 6, mini-batch size 16, and regularization λ = 10−6.
For BARRETTE, we have initialized the bandwidth parameter to 1.

In Fig. 1c, we observe that BARRETTE, by evolving its band-
width during training, is able to converge to a selection compara-
ble to POLK initialized with oracle knowledge of the optimal band-
width. By contrast, with a hyperparameter mis-specification, POLK
yields a fixed bandwidth over the course of training which yields
something to be desired in terms of performance. By contrast, the
hyperparameter evolution employed by BARRETTE is much more
effectively able to minimize the multi-class kernel hinge training loss
despite a poor initialization, as may be gleaned from Fig. 1b.

6. CONCLUSION

We considered algorithms to adapt the hyperparameters of RKHS
function iterates via a distribution that depends on the current func-
tion as well as training examples, which subsumes numerous online
hyperparameter adaptation strategies that arise in practice, such as
bandwidth and inducing input search. We encapsulated its limit-
ing behavior as an ordinary differential equation with algebraic con-
straints, which allowed us to establish its weak convergence under
constant step-size selection to the unique equilibrium of this prob-
lem. This approach was then used to develop online multi-class ker-
nel classification algorithms with bandwidths that stably evolve dur-
ing training, which yielded performance comparable to that which is
achievable with choice of bandwidth according to oracle knowledge
of its optimal value.
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