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Abstract—We focus on multi-agent reinforcement learn-
ing in tabular average-cost settings: a team of agents sequen-
tially interacts with the environment and observes localized
incentives. The setting we focus on is one in which the
global reward is a sum of all local rewards, the joint policy
factorizes into agents’ marginals, and full observability.
To date, exceptionally few global optimality guarantees
exist for this simple setting, as most results, asymptotic
or non-asymptotic, yield convergence to stationarity under
parameterized settings for possibly large/continuous spaces.
To strengthen performance guarantees in MARL, we focus
on linear programming (LP) reformulations of RL for which
stochastic primal-dual method has recently been shown
to achieve optimal sample complexity in the centralized
tabular case. We develop multi-agent LP extensions, whereby
agents solve their local saddle point problems and then
compose their variable estimates with weighted averaging
steps to diffuse information between agents across time.
We establish that the number of samples required to attain
near-globally optimal solutions matches tight dependencies
on the cardinality of the state and action spaces, and
exhibits classical scalings with the size of the team in
accordance with multi-agent optimization. Experiments then
demonstrate the merits of this approach for cooperative
navigation problems.

I. Introduction

Multi-agent reinforcement learning (MARL), where a
collection of agents repeatedly interact with their en-
vironment and are exposed to localized incentives, has
gained traction in recent years for its ability to encap-
sulate numerous tasks involving sequential reasoning
and coordination. For instance, autonomous vehicular
networks [1], games [2], and various settings in econo-
metrics [3], [4]. At the core of MARL is a Markov De-
cision Process (MDP) [5], which determines how agents,
starting from one state, repeatedly select actions which
trigger state transitions according to a Markov transition
density, whereby instantaneous rewards are revealed by
the environment. The goal of agents is to discern a policy
associated with maximizing the cumulative return in the
long-run, where the reward of the team decomposes into
a node-separable sum of all localized rewards [6].

Defining the team reward in this way implies that
agents seek to cooperate towards a common goal, which
may be contrasted with competitive or mixed settings
[7]. Due to the surge of interest in MARL in recent
years, disparate possible technical settings have been
considered, which span how one defines MDP transition
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dynamics; the observability of agents trajectories, the
availability of computational resources at a centralized
location, and the protocol by which agents exchange
information. We consider the case that agents have global
knowledge of the state and action (in contrast to partially
observed settings [8], [9], which may necessitate pooling
information at a centralized location as in centralized
training decentralized execution (CTDE) [10]–[13]). We
also hypothesize that the joint policy of the team factor-
izes into a product of individual marginal policies, which
is referred to as joint action learners (JAL) [14], [15].

Our focus is on decentralized training of JAL, which
means trajectory information is globally known, but
agents’ rewards and policy parameters are held locally
private, which is a setting in common with numerous
recent works that have developed multi-agent exten-
sions of temporal difference (TD) learning [16], [17],
Q-learning [18], value iteration [19], [20], and actor-
critic [21], [22]. In these works, agents may communicate
according to the connectivity of a possibly time-varying
graph, which is intimately connected to multi-agent op-
timization.1 Even for this conceptually clean setting, the
complexity and convergence tradeoffs have only recently
come into view. This is because in the aforementioned
references, most stability guarantees are asymptotic only,
apply only to sub-problems of the MARL problem such
as policy evaluation (estimating the value function as-
suming a fixed policy [28], [29]), or due to implied non-
convexity induced by policy parameterization, conver-
gence stationarity is the most one may hope for [26],
[30] – see [31] for further details.

For these reasons, we focus on linear programming re-
formulation of RL [32]–[34], for which stochastic primal-
dual method has recently been shown to achieve optimal
sample complexity in the centralized tabular case [35]. We
develop multi-agent extensions of this framework, still
in the tabular, whereby a weighted averaging step is
employed in order to diffuse information between agents
across time while optimizing their local utility [6], [36].
2 Our contributions are then to:

1A separate but related body of works seek to estimate the com-
munications architecture when agents’ behavior is fixed using graph
neural networks [23]–[25] or statistical tests for correlation between
agents’ local utilities [26], [27].

2One may more sharply enforce consensus via Lagrangian relax-
ation, .e.g, with primal-dual method [37], alternating direction method
of multipliers (ADMM) [38], and dual reformulations [39]; however, we
opt for a primal-only approach to enforcing consensus for simplicity
and its compatibility with Perron-Frobenius theory [40].
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• propose a new multi-agent variant of the dual
LP formulation of reinforcement learning, where
agents’ decisions are defined by estimates of an
average state-action occupancy measure and value
vector, and consensus constraints are imposed on
agents’ localized estimates (Sec. II).

• owing to node-separability of the Lagrangian relax-
ation of the resulting optimization problem, we de-
rive a decentralized model-free training mechanism
based on a stochastic variant of primal-dual method
that employs Kullback-Lieber (KL) divergence as its
proximal term in the space of occupancy measures
(Sec. III), together with local weighted averaging.

• establish that the number of samples required to
attain near-globally optimal solutions matches tight
dependencies on the cardinality of the state and
action spaces [35], and exhibits classical scalings
with the size of the team in prior theory [6].

• demonstrate the experimental merits of this ap-
proach for solving cooperative navigation problems.

II. Problem Setting

We consider the problem of reinforcement learning
among multiple agents who share a globally observable
state, but take actions and observe rewards both of which
are distinctly local. Thus, agents must coordinate in
order to maximize the team’s cumulative return of re-
wards, which is a sum over all locally observed rewards.
More specifically, we consider a time-varying network
Gt = (V ,Et ,W t) of n agents N := {1,2, . . . ,n}, where agent
i ∈ N may communicate with its neighbors at a given
time t, i.e., those nodes with which it shares an edge
at time t, (i, j) ∈ Et , and no others; the weighting matrix
W t :=[wtij ] ∈R

n×n, where wtij ≥ 0 and wtij = wtji for alli, j, t,
assigns weights to each edge (i, j) at given time t.

With the network structure clarified, we now detail
how the states, actions, and rewards interconnect in the
multi-agent setting under consideration. To be specific,
at each time, each agent i ∈ V observes the current system
state s ∈ S and synchronously takes an action ai ∈ Ai ,
resulting in a joint action a := (a1, ..., an) ∈

�n
i=1Ai , where

the system state space S and the constituent action
spaces Ai are discrete finite sets. The state trajectories
are Markovian, that is, upon execution of the joint action
a, the state transitions to next state s′ with probability
ps,s′ (a) := P(s | s,a). We assume the joint action a is
observed by all agents after execution which is needed
to avoid the subtleties of partial observability. By taking
the joint action a when in state s, each agent i receives an
expected reward r ia,s(s) ∈ [0,1], only known to the agent
i. The system reward ra,s is defined as the sum of the
agents’ rewards over the network, ra,s:=

∑n
i=1 r

i
a,s.

The goal of the team of the cooperative agents is the
maximization of the global cumulative return defined as

max
π
Jπ(s) := lim

T→∞

1
T
E

T−1∑
t=0

ra,s

∣∣∣∣s0 = s

 (1)

where π denotes the joint policy of all agents, that is,
a probability distribution over joint action-space given
system state, π : S×A→ [0,1]. The joint policy prescribes
the probability that a joint action a := (a1, . . . , an) is
taken by the collection of the agents when in system
state s, which we assume factors into marginals of each
individual agent’s policy: π(a|s) :=

∏N
i=1πi(ai |s). That is,

the local policies are statistically independent, and are
further denoted as πi(ai |s) which define the probability
of taking action ai by agent i when in state s.

Our specific goal in this work is the design of policy
optimization schemes to solve (1) such that each agent,
upon the basis of its local action selections and local
rewards and information exchange with its neighbors,
as well as global state-action information, learns local
policy parameters that result in the overall team attain-
ing the optimal value (1). Moreover, we consider in the
model-free setting, i.e., the dynamics of the environment
(the transition probabilities and transitional rewards) are
unknown to the agents, but a simulation oracle is avail-
able to the agents to generate state-action-reward tuples
(s,a, r). Under the setting that the transition dynamics are
Markovian and irreducible, the optimal policy satisfies
the average-cost Bellman equation [41].

λ+vs = max
a∈A

∑
s′
ps,s′ (a)ra,s+

∑
s′
ps,s′ (a)vs′

 for all s ∈ S (2)

We denote solutions to the Bellman’s equation by pairs
(λ∗,v∗), the search for which may be reformulated as the
solution of the following linear program [41], [42]:

By substituting the definition of the global reward ra,s
in terms of the local rewards r ia,s into the dual linear
program representation of (2), we obtain the following
multi-agent optimization problem with the global vari-
ables µa,s corresponding to the joint policy π:

max
µ∈R|S|×|A|

n∑
i=1

∑
a

µTa r
i
a s.t.


∑
a(I − P Ta )µa = 0 for all s∑
s,aµ(s,a) = 1, µa,s ≥ 0 for all a,s

(3)
where I is an identity matrix of the appropriate size and
Pa ∈ R

|S|×|S| is the matrix whose (s, s′)-th entry equals
to ps,s′ (a). For every feasible point of the above linear
program µ = (µa)a∈A, the ξπ = (ξπs )s∈S is the stationary
state distribution where ξπs =

∑
aµa,s, and

∑
x,aµ(x,a)ra,s

corresponds to the average reward λπ of policy π where
π(a|s) = µa,s

ξπs
. Moreover, µa ∈ R

|S| denotes the unnor-
malized occupancy measure over the state space S for
each action a ∈ A. Through normalization, one may
recover the associated policy π for any feasible µ as
ξπs =

∑
aµa,s, π(a|s) = µa,s∑

a µa,s
, µa,s = ξπs π(a|s) Then, an

optimal joint policy π∗ can be constructed by normaliz-
ing the occupancy measures associated with the solution
to the above linear program. See [5] for details. π∗(a|s) =
µ∗a,s∑
a µ
∗
a,s

This work develops a decentralized model-free
algorithm to solve (1) upon the basis of Lagrangian
relaxations of (3), detailed next.
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III. Saddle Point Method

In this section, we reformulate the multi-agent LP
of (3) as a saddle point problem by considering its
Lagrangian relaxation We consider the Lagrangian re-
laxation of the preceding stochastic linear program after
rescaling the first constraint in (3) by n, which yields
following saddle point problem

min
v∈V

max
µ∈U

L(µ,v) :=
n∑
i=1

∑
a∈A

µTa (n(Pa − I)v + r ia). (4)

The optimal solution v∗ and µ∗ to the multi-agent linear
program satisfy v∗ ∈ V and µ∗ ∈ U , where the search
spaces for the value V and policy U are suitably defined
to refine the limiting radius of convergence. Then, based
upon applying stochastic primal-dual method to the
aforementioned problem, one may derive the iterative
updates in which agent i computes the weighted neigh-
borhood average of the primal and the dual variables
by taking a convex combination µ̃ti (resp. ṽti ) of its own
estimate µti (resp. vti ) with the estimates received from
its neighboring agents at time t as

µ̃ti =
n∑
j=1

wtijµ
t
j , ṽti =

n∑
j=1

wtijv
t
j . (5)

Then, each agent makes a gradient descent (respectively,
ascent) step to minimize (respectively, maximize) its
local component of the global Lagrangian function Li ,
followed by a projection onto the constraint set U (re-
spectively, V ). At every t ≥ 0, each agent i generates new
estimates µt+1

i , hit+1 according to the following update
rules:

µ
t+ 1

2
i (s,a) =

µ̃ti (s,a)exp(α∆t+1
i (s,a))∑

s′
∑
a′ µ̃

t
i (s,a)exp(α∆t+1

i (s′ , a′))

µt+1
i = argmin

µi∈U
DKL(µi‖µ

t+ 1
2

i ),where (6)

vt+1
i = ΠV [ṽti − βd

t+1
i ] (7)

where α and β are constant step sizes; ΠV is a Euclidean
projection onto the set V , and dti + 1, ∆t+1

t are the
respective primal/dual gradients of the local Lagrangian
with respect to µi/vi . Note that the update on µ is mirror-
descent with a Kullback-Leibler (KL) divergence over the
unnormalized probability simplex and the gradient step
on the variable v is a simple projected gradient descent.
We assume algorithm initialization as µi = 0 and vi = 0
for all i ∈ N .

Our main theoretical contributions associated with the
project underlying this abstract submission is the non-
asymptotic convergence analysis of the MARL scheme
defined by (6) - (7). Specifically, we establish that this
algorithm allows agents to converge to an ε-globally
optimal policy in a number of samples (MDP queries)
linear in the total number of state-action pairs, which is
sublinear in the input size. Experimentally, we validate
the proposed approach on tabular MARL approaches

associated with grid worlds, namely, a cooperative nav-
igation task.
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