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Abstract— We consider the problem of controlling anten-
nae gains and positions among a set collection of mobile
beamforming agents. Existing approaches predominately fall
into two categories: solvers based upon convex relaxations
of subset selection, and Monte Carlo sampling approaches
that seek close-to-exact solutions, whose consistency requires
the number of samples to approach infinity. In this work,
we adopt an approach that improves upon the accuracy of
prevailing convex relaxation approaches, motivated by their
relative computational efficiency. Specifically, for fixed pose,
we develop a modified hierarchical prior which is well-known
within Bayesian inference to promote sparsity more effectively
than the conventional Gaussian-gamma prior. Then, with this
specification, we develop a variant of Expectation Maximization
(EM) whose updates can be evaluated in closed form to obtain
the beamforming gains and set of active agents. Then, when
the signal phase and and amplitude are fixed, we propose a
projected block descent approach, i.e., alternating nonlinear
least-squares, for efficient relocation of the pruned set of agents.
The inter-weaved iterative approach presented here better
synthesizes the desired beam pattern with the minimum set of
active agents and demands less computational load compared
to the dense grid search implementations. Preliminary results
indicate the proposed approach attains a superior tradeoff of
sparsification and accuracy as compared to existing approaches.

I. INTRODUCTION

Beamforming is a fundamental capability for mobile au-
tonomous agents equipped with directional antennae. The
objective is to form a beam by selecting the antenna phase
and amplitude to match a desired pattern. In of itself,
this is a comple-valued non-convex optimization problem
that arises in satellite communications, radars, biomedical
imaging, acoustics, and remote sensing [1], [2]. Often, one
would like to form a desired beam pattern with as few agents
as possible, which is referred to as sparse beamforming
[3]. In this work, we put forth a new technique for sparse
beamforming and position control among a group of mobile
agents that attains superior tradeoffs in computational effort
and the parsimony of the number of transmitting agents.
Our approach is based upon (i) a new regularizer derived
from a hierarchical Bayesian hyper-parameter specification
fused with Expectation Maximization (EM) to solve for
the beamforming gains and cardinality of the set of active
agents, which alternates with (ii) a position estimation step
constructed from alternating nonlinear least squares, matrix
projections, and logarithmic variable transformations.
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Predominate existing approaches may be categorized into
matrix pencil methods [4]–[6], global optimization schemes
[7]–[9], solvers based upon convex relaxation [10]–[15], and
Bayesian/Monte Carlo approaches [16]–[18]. Matrix pencil
methods (MPM) offer a non-iterative scheme for the synthe-
sis of sparse beamforming arrays with reduced computation
time [4]–[6]. The approach organizes the associated data
from the desired pattern in the form of the Hankel matrix
and finds its lower rank approximate with singular value
decomposition. Further, the matrix pencil method of [19]
is applied to reconstruct the excitation and the position of
the reduced set of antenna arrays. The approach is fur-
ther extended to a forward-backward matrix pencil method
(FBMPM) which partially mitigates imaginary solutions in
the element locations [5]. The work in [6] proposes a mul-
tiple pattern synthesis version of [5] using enhanced unitary
matrix pencils. Despite its effectiveness, MPM methods are
offline approaches that offer less flexibility for any possible
adaptation and are limited in terms of imposing user-defined
geometric features on the generated beam.

Beamforming based on global optimization schemes are
proposed in [7]–[9]. The works, [7]–[9] present iterative
schemes based on modified real genetic algorithm, bio-
geography based optimization, and the population-based
stochastic solve constrained optimization problem for opti-
mal element positions. Though global optimization methods
are generally efficient, unknown agents in sparse solutions
add to the computational complexity and the time required.

Another class of work in this area solves the problem as a
constrained convex optimization with an equivalent convex
cost function. Though the problem of sparsity is in general
NP-hard, [10]–[15] propose equivalent convex norms for
the non-convex `0 auxiliary cost functions. For instance, an
iterative approach based on `1 norm is presented in [10].
The approach therein eliminates the non-convex nature of
the constraints, however, reduces half of the design variables
and tends to converge to suboptimal solutions [11]. This is
again extended to address different geometric arrays using
weighted `1 optimization problem in [11]. Along similar
lines, a mixed `1,∞-norm squared for group-sparsity and
semidefinite relaxation is proposed in [12], [13]. Approaches
in the literature such as [14], [15] focuses on mimicking
behavior of `0 norms with re-weighted `1 approaches to get
as close as possible to the `0-norm.

Another line of research treats the problem within the
Bayesian framework and better mimics `0 norm [16]–[18],
[20]–[22]. Although, the approaches discussed above can
also be treated as an optimization in Bayesian framework



with a fixed factorial prior, associated cost functions fail to
be sufficiently sparse [22]. Auxiliary cost functions based
on `1 norms are uni-modal function which however may
not be sufficiently sparse. On the other hand, sparse enough
`2 cost functions suffer from numerous local minima, and
closeness to the global solution is heavily dependent on
proper initialization [21], [22].

Inspired from fast relevance vector machine algorithm
introduced in [23], [24], [16] presents pattern synthesis using
maximally-sparse array with the highest a-posteriori prob-
ability and solves for agent weights. Herein, a hierarchical
prior is introduced on the agent weights, weights correspond-
ing to agents are integrated out and the hyperparameters are
solved by maximizing the marginal likelihood. The approach
inherently forces weights corresponding to most of the agents
to zero while generating the desired pattern. Different choices
of priors on weights are considered in [20]. An extension
to complex non-Hermitian layouts with multi-task Bayesian
compressive sensing theory in [17], [18].

Though, Bayesian learning guarantees maximally sparse
solutions [25], the reconstruction error is bounded by the
position of available beamforming arrays [26]. In other
words, sparse recovery is accurate if the considered agent
positions are near to the fictitious agents that were used to
create the beam and the error deteriorated with the mismatch.
To this effect, joint optimization of both position and weights
are addressed with compressed sensing based approaches
[26], [27] wherein, the candidate sparse element positions
are constrained onto a set of discrete grid points for higher
degrees of freedom. Such a process, however is sensitive to
the initial setting of the grid and increases the computational
load with dense grids. Further, approaches based on Taylor’s
first order approximations with less computational complex-
ity would be erratic for higher mismatch in agent positions
and results in slow convergence [28].
Contributions We propose an interweaved iterative ap-
proach to control the cardinality and position of beamforming
agents with a better beam matching. We adopt the Bayesian
framework for agent selection that offers maximal sparsity
for a given agent layout whose performance, however, de-
pends on the positioning error of available active agents.
First, we introduce a modified prior as opposed to the
conventional prior and forces high probability mass near
to the null of beamforming weights, in turn, offers better
shrinkage of the active agent set (Lemma 1). Iterative ex-
pressions for beamforming weights and hyperparameters are
updated based on the proposed regularizer using evidence
maximization. Another challenge for sparse beamforming is
the efficient relocation of the pruned agent set for better
beam matching without a high computational complexity.
For a given set of beamforming weights, we exploit the un-
derlying convex structure and propose an iterative projected
block descent for efficient agent positioning. The approach
results in superior beam matching with less computational
complexity and efficient sparse recovery in comparison with
the commonly used algorithms in the literature.

The paper is organized as follows: Section II introduces

the problem of sparse beamforming. The proposed approach
is introduced in Section III along with an introduction to the
agent selection problem and the associated cost functions.
Section IV discusses its performance and compares it with
available algorithms. Concluding remarks are given in Sec-
tion VI with additional discussion on derived expressions in
Section VII.

II. PROBLEM FORMULATION

In this work, we focus on the physical communications
problem of synthesizing a beam among a set of n mobile
agents. The location of agent i is a planar quantity [xi, yi] ∈
R2. The agents are equipped with directional antennae, and
the array factor, which determines their ability to commu-
nicate, is a complex-valued far-field radiation pattern whose
closed form is given by [29]

AF(θ) =

n−1∑
i=0

ai e
j(αi+kxi cos(θ)+kyi sin(θ)) (1)

where ai denotes the signal amplitude and αi is its phase.
The excitation of each element (ai exp (jαi)) can be repre-
sented by complex weights, wi ∈ C, ∀i = 1, . . . , n, k is
the wave number and θ, α ∈ [0, 2π). The generalized array
factor can be further expressed as

AF(θ) =

n−1∑
i=0

wi e
j(kxi cos(θ)+kyi sin(θ)) (2)

With this physical entity defined, the main technical problem
we consider in this work is how, given samples from an a
priori unknown desired beam pattern (AFd) obtained along
θi, ∀i = 1, . . . , N directions, a minimum number of mobile
agents are selected to match the desired beam at the given
directions accurately as possible. More specifically, sparse
beamforming may be encapsulated as the joint optimization
of position ri = [xi, yi] and complex weights, wi such that
the generated beam is matched with the desired pattern at N
directions with minimum set of n agents:

min
n

min
{ri,wi}ni=1

‖AF−AFd‖22 . (3)

Here, AFd ∈ CN represents N samples of the desired
pattern and AF ∈ CN represents corresponding values of
the beam created by n agents at θi. Moreover, the desired
pattern AFd ∈ CN is created by a set of nd “fictitious”
agents, which is unknown.

Next, we elaborate how this optimization problem admits
a formulation as a nonlinear least-squares over real-valued
range when the agent positions are fixed. Specifically, we
propose lifting the complex-valued entities, i.e., the array
factor AF ∈ CN [cf. (2)] by defining the matrix H(r) and
coefficient vector w as

AF =H(r)w (4)

[H(r)]ml =ejk(xl cos θm+yl sin θm) (5)

where [H(r)]ml denotes the (m, l)th entry of the matrix
H(r) with m, l = 1, · · · , N . Next, to define a convex



formulation with respect to the excitation of agents, by
utilizing the definitions in (5), we consider matching the real
and imaginary parts of the patterns, i.e., reformulating the
objective of (3) as

min
n

min
{ri,wi}ni=1

∥∥∥Φ(r)w̃ − ÃFd

∥∥∥2
2

(6)

where,

Φ(r) =

[
R(H(r))−I(H(r))
I(H(r)) R(H(r))

]
, ÃFd =

[
R (AFd)
I (AFd)

]
(7)

and w̃ = [R(w), I(w)]
>. Observe that the problem in (6) is a

nonlinear least-squares problem when we ignores the subset
selection aspect of (3) and fix the agent poses [xi, yi]. In this
work, however, we consider the unified problem of selecting
agent antennae gains (signal amplitude and phase), positions,
and the number of agents. This makes the problem under
consideration both non-convex and an integer program. In the
next section, we develop an approach based upon Bayesian
relaxation of the subset selection problem and alternating
nonlinear least squares.

III. MINIMUM AGENT SELECTION AND EXISTING
APPROACHES

The problem of reducing cardinality of set of active agents
for a given Φ in (6) is equivalent to minimizing agents with
non-zero w̃ given by

min
w̃
‖w̃‖0, s.t. ÃFd = Φw̃. (8)

Here, `0 norm represents indicator function, ‖w̃‖0 =∑
I [|w̃i| > 0]. We note that in (8), the exact sparse recovery

is NP-hard and different approximation methods have been
proposed in literature to mimic the solution [10]–[15]. One of
the most popular among them is the `1 regularizer (LASSO)
which can be conveniently solved for the global minimum
with standard optimization methods [14]. However, the ob-
tained global minimum does not necessarily coincide with
the sparsest solutions (except in the special cases, [30]). On
the other hand, approaches based on multi-modal `p norms
converge to suboptimal local minima [31]. Due to these
limitations, we resort to Sparse Bayesian Learning (SBL)
based formulations for `0 approximation which is shown to
settle to the sparsest solution for a given Φ (at least in the
absence of noise) and possess fewer local minima compared
to `p approaches [31]. A sharper w̃ distribution along with
a flat tail further reduces the set of active agents compared
to conventional SBL formulations. However, this leads to
undesired pruning of the active agents along with a dete-
riorated pattern matching which can be properly corrected
with the adequate position control. The following subsection
proposes a solution to this joint optimization problem with
an inter-weaved iterative scheme based on SBL and second-
order nonlinear least square method.
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A. Bayesian Hyper-parameter Specifiction

We begin by introducing the probabilistic assumptions that
give rise to the functional form of our augmented regulariza-
tion. More specifically, SBL approaches to agent selection
hinge upon a Gaussian likelihood model for beamforming
with N samples from the desired beam given by

p(ÃFd)|w̃) = (2πσ2)−N/2e−
‖ÃFd−Φw̃‖22

2σ2 . (9)

The above expression is equivalent to beamforming error,
ε = ‖ÃFd − ÃF‖2 being modelled as N (ε; 0, σ2I) [22]. The
hierarchial approach to sparse recovery hinges upon specify-
ing the prior distribution of w̃ as p(w̃; γ) ∼ N (w̃; 0, diag[γ])
with γ ∈ R2n being the hyperparameter for the model. The
hierarchical prior on w̃ and γ given by

p(w̃|γ) =

n∏
i=1

p(w̃i|γi),

where p(w̃i|γi) =N (0, γi),

and p(γ−1i ) =γ1−ai e−b/γi . (10)

The prior on w̃ and hyperparameter γ operates as follows.
When γi is null, then the associated coefficient w̃i is null,
which eliminates the corresponding agent, i.e., kicks it out
of the set of active beamforming agents. We hypothesize that
the noise prior σ2 is either known or user-specified.

In contrast to standard SBL where an uninformative prior
is used, i.e., a and b are zero in (10), we select a = 1 and
b = λ/2. These selections result in a sharper distribution
for w̃ with flat tails as shown in Fig. 1 as opposed to the
conventional case (solid curve in the figure).

Now, let’s consider the marginal log-likelihood for γ,
which may be obtained by marginalizing over w̃

L(γ) = −2 log

∫
p(ÃFd|w̃)p(w̃|γ)dw̃p(γ)

= log |ΣÃFd
|+ ÃF

>
d Σ−1

ÃFd
ÃFd + λ

n∑
i

γj (11)



where, ΣÃFd
= σ2I + ΦΓΦ>, Γ , diag [γ]. Maximizing

the above expression, specifically, evidence maximization
(type-II maximum likelihood) [23] allows us to estimate the
hyperparameters, γ. In contrast to the conventional SBL,
the last term in (11) is the additional summand which
further incentivizes the reduction in the number of active
beamforming agents. Doing so then yields iterative updates
for the hyper-parameters which can be evaluated in closed
form, as we formalize next.

Lemma 1: Expectation-maximization (EM) applied to the
likelihood (11) can be evaluated with closed-form iterative
updates for the hyperparameter γ and agent weights w̃ as

µ = w̃ = E
[
w̃|ÃFd, γ∗

]
= ΓΦ>Σ−1

ÃFd
ÃFd (12)

Σ = Γ− ΓΦ>Σ−1
ÃFd

ΦΓ (13)

γi =
2
(
µ2
i + Σii

)
1 +

√
1 + 4λ(µ2

i + Σii)
, ∀i = 1, . . . , n. (14)

Proof: See the appendix in Sec. VI-A.
Lemma 1 may be employed to iteratively find the optimal

beamforming gain w̃ and sparsity-inducing hyperparameter
γ when the agent positions are fixed. In the following
subsection, we expand upon how one may improve agent
positioning for beaming through a numerical search routine
based upon nonlinear least-squares.

B. Position Control

We consider an approximation of the constrained `0 prob-
lem in (8) as

arg min
r,w
‖w‖0,

s.t. ‖AFd −H(r)w‖22 ≤ ε̃ (15)

where we use the lifting of the complex-valued quantities
via (4) and ε̃ is the approximation introduced for the desired
beam pattern. We note that for a fixed w, the problem in
(15) defines a quadratic program given by

min
Hj

‖AFd −
[
H1 . . . Hn

]︸ ︷︷ ︸
unknowns, Hj∈CN

w‖22 (16)

which is convex in Hj for all j = 1, . . . , n and the problem
in (16) is constraint satisfaction problem. Let us define H =
[H1 . . . ,Hn] and a convex set C1 as

C1 ,
{
H ∈ RN×ns.t.∀ j = 1, . . . , n,H>j Hj ≤ N

}
(17)

which removes scaling ambiguity and constraints the feasible
set of matrices H onto a convex set with `2 norm of column
matrices bounded by N . A nonlinear least-squares estimate
of the above problem with a constrained solution space and
logarithmic transformation yields the refined agent positions
in an iterative manner. With the convex optimization problem
of (16), we obtain a closed-form expression for the optimality
condition by computing the gradient with respect to H given

by

∇H
1

2
(Hw−AFd)

>(Hw −AFd) (18)

=
1

2
∇HTr

(
w>H>Hw −w>H>AFd

−AF>d Hw −AF>d AFd

)
(19)

=(Hww> −AFdw
>). (20)

Note that the Hessian of (16) with respect to H is written
as ww>. A sequential least square update of Hj at i+ 1-th
iteration can be expressed as

Hj(i+ 1) = Hj(i) + diag(w(j)w(j)>)−1

(AFdw(j)> −H(i)ww(j)>), ∀j = 1, . . . , n (21)

Hj(i+ 1)← Hj(i+ 1)

max(‖Hj‖2, N)
(22)

The update in (22) defines the projection of estimated Hj

onto C1 and removes scaling ambiguity. The position of j-th
mobile agent [x∗j , y

∗
j ] based on the estimated Hj is given

by [
x∗j
y∗j

]
=

1

k

[
(R>θ Rθ)

−1R>θ
]

(HR) (23)

where,

[Rθ]i,: =[cos θi sin θi]

HR =
1

k

[
I(log Hj)

]
= Rθ

[
x∗j
y∗j

]
. (24)

In (24), [Rθ]i,: denotes the ith row with i = 1, · · · , N and all
columns. The elements of column matrix, Hj should lie on a
unit circle with a phase shift depending on the corresponding
sampling direction, θi and the estimated (x∗j ,y

∗
j ):

e
jk∗

〈
r∗j ,

∑N
i=1

cos θi
sin θi

〉
=

N∏
i=1

H(i, j), ∀j = 1, . . . , n,

(25)

C2 defines the corresponding space

C2 ,
{

H ∈ RN×ns.t.∀ j = 1, . . . , n,

∃r∗j , ejk∗〈r
∗
j ,(dθ1+...+dθN )〉

N∏
i=1

H(i, j)
}
. (26)

Here, dθj represents unit vector,
([

cos θj
sin θj

])
along the di-

rection of j-th sample. The above constraint forces each ele-
ments of the column vector, Hj onto a unit circle consistent
with x∗j and y∗j and is given by

Hj(i+ 1)← ΠC2 [Hj(i+ 1)] , ∀j = 1, . . . , n, (27)

where, ΠC2 represents orthogonal projection on the set C2
corresponding to [x∗i , y

∗
i ].

We summarize the idea for the joint positioning and
beamforming control in Algorithm 1. We start with a set of
agents at a given location and solve for the number of agents



Algorithm 1 Joint positioning and beamforming control

procedure REQUIRE( N samples, ÃFd, set of n (n >
N + 1) agents at r)

Initialize : λ = 1, Γ = In×n, and w̃
Obtain H and AF from (4) - (5)
while ‖AFd −AF‖2 ≥ ε̃ do

Obtain Φ and ÃF from (7)
while ε has not converged do . sparse recovery

for a given agent layout
compute Σ, w̃ using (12),
update γi, ∀i = 1, . . . , n using (14)

w̃← E
[
w̃|ÃFd; γ∗

]
= Γ∗Φ

>Σ−1
ÃFd

ÃFd
Remove agents with w̃ = 0, update agent set and

cardinality, n
while Hj not converged do . Position control

for given sparse set
for j=1 to n do

Compute constrained least square estimate,
Hj using (21) - (22)

Calculate (x∗j , y
∗
j ) using (23)

Update Hj using (27)
Update r

Return: w̃ and r

and corresponding excitation with evidence maximization of
the proposed marginal log-likelihood. The iterative updates
of (12)-(14) modify the excitation of agents and reduce the
search space by removing inactive agents. Further, we refine
the positioning of the pruned agent set for a better beam
matching. With the underlying convex structure of the prob-
lem along with combined nonlinear least-square estimates,
matrix set projections, and logarithmic transformations, (21)-
(27) refine the location of the active beamforming agents.

IV. SIMULATIONS AND DISCUSSIONS

In this section, we evaluate the performance of Algorithm
1 and compare its merits against other available techniques
in the literature to solve the similar problem.

For the purpose of simulations, we consider a set of 50
samples from the desired pattern, AFd ∈ CN created by a
group of fictitious agents as given in Fig. 2(a). The fictitious
agents assumed to be in an equally spaced beamforming
array centered around the origin as shown in Fig. 2(b),
transmits at 40 MHz with αm = π/4, am = 100 for all m =
1, . . . , 5. Numerical simulations consider three different
cases, ranging from available sets of agents in the proximity
of fictitious agents to the case with distant positioning from
fictitious agents. The three different layouts with available
set of 64 agents distributed along rectangular grids are
shown in Figs. 3(a), 3(b), and 3(c). The performance of the
algorithm for sparse beamforming is compared in terms of
its accuracy and sparsification with existing approaches of
Sparse Bayesian Learning (SBL) [16], reweighted-`2 [32],
reweighted-`2 based on sparse Bayesian learning [33], `1
with FOCal Underdetermined System Solver (Focuss) [34]
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Fig. 3: Initial agent layouts considered for experiments

and Perturbed Compressed Sensing (PCS) [26]. Number of
agents selected by the algorithms are given in Fig. 4(a) with
corresponding errors, ε = ‖ÃFd − ÃF‖2 for all the cases
are depicted in Fig. 4(b). Modified SBL of (12) - (14) , i.e.,
the proposed approach without including position refinement
obtain a better parsimonious collection of active beamform-
ing agents compared to conventional SBL, however, the
additional shrinkage in w̃ imposed by (11) is at the cost of
deteriorated beam matching. On the other hand, the proposed
approach of Algorithm 1 results in better sparse recovery
and accuracy as shown in Figs. 4(a) and 4(b). In short, the
approach provides more parsimonious collections of mobile
beamforming agents for a fixed accuracy as described in Fig.
4(a). Similarly, for a given number of agents (excluding the
Monte-Carlo approach with higher computational complexity
[35]), the proposed approach provides better accuracy as
shown in Fig. 4(b).

V. CONCLUSION

In this work, we proposed a joint optimization approach
based on modified hierarchical prior and alternating block
coordinate descent to control the weights and efficient relo-
cation of beamforming agents for accurate beam matching in
the given directions. Experiment results demonstrated supe-
rior performance with better sparse recovery and accuracy as
compared to the existing approaches. Future research direc-
tions involve the development of adaptive sparsification logic
with selective pruning based on the agent weights, group
sparsity, and inherent mutual coupling among beamforming
agents.

VI. APPENDIX

A. Proof of Lemma 1

Consider the likelihood for the array factor (9) and apply
Bayes’ Rule to obtain the posterior distribution over the
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weights, w̃ can be expressed as

p(w̃|ÃFd, γ) =
p(ÃFd|w̃)p(w̃|γ)p(γ)

p(ÃFd|γ)
(28)

Observe that the denominator in the preceding expression is
a convolution of Gaussians, and hence reduces to a Gaussian
distribution:

p(w̃|ÃFd, γ) = N (µ,Σ) (29)

where the mean and covariance parameters may be evaluated
using standard rules for transformation of Gaussian distribu-
tions:

µ = ΓΦ>
(
λ2I + ΦΓΦ>

)−1
ÃFd (30)

Σ = Γ− ΓΦ>
(
λ2I + ΦΓΦ>

)−1
ΦΓ (31)

These expressions for the mean and covariance are the as
stated in Lemma 1, specifically, (12) - (13).

Now, we proceed to derive Expected Maximization updates
for γ (14), inspired by [23]. To do so, we first require,
the marginal log-likelihood for γ. To obtain this likelihood,
proceed then by integrating out the weights w̃ from the log-
likelihood [cf. (29)] as

L = Ew̃|ÃFd,γ

[
log p(ÃFd|w̃) + p(w̃|γ) + log p(γ)

]
(32)

Using second moment of Gaussian, Ew̃|ÃFd,γ

[
w̃2
i

]
= Σii +

µ2
i and removing the terms independent of γ, the above

expression simplifies to

L = −1

2

(∑
log γi +

∑ Σii + µ2
i

γi
+
∑ λγi

2

)
, (33)

where we have substituted in choices a = 1 and b = λ/2 for
the prior in (14) to write (33) Now the maximization step, in

other words, derivative of the above expression with respect
to γi yields

γi =
2
(
µ2
i + Σii

)
1 +

√
1 + 4λ (µ2

i + Σii)
(34)
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