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Abstract— We study the estimation of risk-sensitive policies in
reinforcement learning problems defined by a Markov Decision
Process (MDPs) whose state and action spaces are countably
finite. Prior efforts are predominately afflicted by computational
challenges associated with the fact that risk-sensitive MDPs are
time-inconsistent. To ameliorate this issue, we propose a new
definition of risk, which we call caution, as a penalty function
added to the dual objective of the linear programming (LP)
formulation of reinforcement learning. The caution measures
the distributional risk of a policy, which is a function of the
policy’s long-term state occupancy distribution. To solve this
problem in an online model-free manner, we propose a stochas-
tic variant of primal-dual method that uses Kullback-Lieber
(KL) divergence as its proximal term. We establish that the
number of iterations/samples required to attain approximately
optimal solutions of this scheme matches tight dependencies on
the cardinality of the state and action spaces, but differs in
its dependence on the infinity norm of the gradient of the risk
measure. Experiments demonstrate the merits of this approach
for improving the reliability of reward accumulation without
additional computational burdens.

I. INTRODUCTION

In reinforcement learning (RL) [1], an autonomous agent
in a given state selects an action and then transitions to a new
state randomly depending on its current state and action, and
then the environment reveals a reward. This framework for
sequential decision making has gained traction in recent years
due to its ability to effectively describe problems where the
long-term merit of decisions does not have an analytical form
and is instead observed only in increments, as in recommender
systems [2], videogames [3], [4], control amidst complicated
physics [5], and management applications [6].

The canonical performance metric for RL is the expected
value of long-term accumulation of rewards also called as
expected returns. Unfortunately, restricting focus to expected
returns fails to encapsulate many well-documented aspects
of reasoning under uncertainty such as anticipation [7],
inattention [8], and risk-aversion [9]. In this work, we focus
on risk (objective beyond expected rewards), both due to
its inherent value in behavioral science and in pursuit of
improving the reliability of RL in safety-critical applications
[10].

Risk-awareness broadens the focus of decision making
from expected outcomes to other quantifiers of uncertainty.
Risk, originally quantified using the variance in portfolio
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management [11], has broaden to higher-order moments or
quantiles [12], and gave rise to a rich theory of coherent
risk [13], which has gained attention in RL in recent years
[14], [15] as a frequentist way to define uncertainty-aware
decision-making.

Incorporating risk gives rise to computational challenges
in RL. In particular, if one replaces the expectation in the
value function by a risk measure, the MDP becomes time-
inconsistent [16], that is, Bellman’s principle of optimality
does not hold. This issue has necessitated modified Bellman
equations [17], multi-stage schemes [15], or policy search
[18], all of which do not attain near-optimal solutions in
polynomial time, even for finite MDPs. Alternatively, one
may impose risk as a probabilistic constraint [19], [20], [14],
[21], [22] in the spirit of chance-constrained programming
[23] common in model predictive control.

An additional approach is Bayesian [24] and distributional
RL [25], which seeks to track a full posterior over returns.
These approaches benefit from the fact that with access to
a full distribution, one may define risk specifically, with,
e.g., conditional value at risk (CVaR) [26]. One limitation is
that succinctly parameterizing the value distribution intersects
with approximate Bayesian computation, an active area of
research [27].

In this paper, we seek to define risk in sequential decision
making that (1) provides a tunable tradeoff between the mean
return and uncertainty of a decision; (2) captures long-term
behaviors of policies that cannot be modeled using cumulative
functions; (3) can be solved efficiently in polynomial time,
depending on the choice of risk. To do so, we formulate a class
of distributional risk-averse policy optimization problems to
address risks involving the long-term behaviors that permit
the derivation of efficient algorithms. More specifically, we:
• propose a new definition of the risk of a policy, which we

call caution, as a function of the policy’s long-term state-
action occupancy distribution. We formulate a caution-
sensitive policy optimization problem by adding the
caution risk as a penalty function to the dual objective
of the linear programming (LP) formulation of RL. The
caution-sensitive optimization problem is often convex,
allowing us to directly design the policy’s long-term
occupancy distribution (Sec. III).

• derive an online model-free algorithm based on a stochas-
tic variant of primal-dual policy gradient method that
uses Kullback-Lieber (KL) divergence as its proximal
term (Sec. IV).

• establish that the number of sample transitions required
to attain approximately optimal solutions of this scheme



matches tight dependencies on the cardinality of the state
and action spaces, as compared to the typical risk-neutral
setting (Sec. V).

Further, we demonstrate the experimental merits of this
approach for improving the reliability of reward accumulation
without additional computational burdens (Sec. VI)

II. PRELIMINARIES

A. Discounted Markov Decision Process

We consider the problem of reinforcement learning (RL)
with finitely many states and actions as mathematically de-
scribed by a Markov Decision Process (MDP) (S,A,P, r, γ).
For each state s ∈ S , a transition to state s′ ∈ S occurs when
selecting action a ∈ A according to a conditional probability
distribution s′ ∼ P(·|a, s), for which we define the short-hand
notation Pa(s, s′). Moreover, a reward r̂ : S ×S ×A 7→ R is
revealed and is denoted as r̂ss′a. Without loss of generality,
we assume r̂ss′a ∈ [0, 1] with probability 1 for ∀s, s′ ∈ S and
∀a ∈ A throughout the paper. For future reference, we denote
the expected reward with respect to transition dynamics as
rsa := E [r̂ss′a|s, a] =

∑
s′∈S

Pa(s, s′) · r̂ss′a and the vector of

rewards for each action a as ra = [r1a, · · · , r|S|a]T ∈ R|S|.
In standard (risk-neutral) RL, the goal is to find the action

sequence which yields the most long-term reward, or value:

v∗(s) := max
{at∈A}

E

[ ∞∑
t=0

γtr̂stst+1at

∣∣∣∣ s0 = s

]
, ∀s ∈ S.

(II.1)

B. Bellman Equation and Duality

The optimal value function v∗ (II.1) satisfies Bellman’s
optimality principle [28]:

v∗(s)=max
a∈A

{
γ
∑
s′∈S

Pa(s, s′)v∗(s)+
∑
s′∈S

Pa(s, s′)r̂ss′a

}
(II.2)

for all s ∈ S. Then, due to [29], the Bellman optimality
equation (II.2) may be reformulated as a linear program (LP)

minv≥0 〈ξ, v〉 (II.3)
s.t. (I − γPa)v − ra ≥ 0, ∀a ∈ A

where ξ is an arbitrary positive vector. The dual of (II.3) is
given as

maxλ≥0

∑
a∈A
〈λa, ra〉 (II.4)

s.t.
∑
a∈A

(I − γP>a )λa = ξ, ∀a ∈ A

where λa = [λ1a, · · · , λ|S|a]> ∈ R|A| is the a-th column of
λ. To the subsequent development, an essential fact is that λ
is an unnormalized state-action occupancy measure and∑
a∈A
〈λa, ra〉 = E

[ ∞∑
t=0

γtrstst+1at

∣∣∣∣ s0 ∼ ξ, at ∼ π(·|st)

]
when ξ belongs to the probability simplex. The dual LP
formulation (II.4) has a clear physical meaning. Suppose

ξ ≥ 0 and ‖ξ‖1 = 1 is a distribution over the state space S.
Then the following proposition explains the meaning of the
dual problem.

Proposition 2.1: Suppose the variable λ ∈ R|S|×|A|+ satis-
fies the conditions

λ ≥ 0 and
∑
a∈A

(I − γP>a )λa = ξ, (II.5)

Then λ is an unnormalized distribution, or flux, under the
randomized policy π:

π(a|s) =
λsa∑

a′∈A λsa′
, for ∀a ∈ A,∀s ∈ S. (II.6)

Furthermore, it satisfies

λsa =

∞∑
t=0

γt · P
(
st = s, at = a

∣∣∣∣ s0 ∼ ξ, at ∼ π(·|st)
)

(II.7)
and

〈λ, r〉 = E

[ ∞∑
t=0

γtrstst+1at

∣∣∣∣ s0 ∼ ξ, at ∼ π(·|st)

]
. (II.8)

Proof: Under the initial distribution ξ and the random-
ized policy π : S 7→ ∆|A| defined in (II.6), we define a new
initial distribution ξ̂ as

ξ̂sa = ξs · π(a|s) for ∀s ∈ S, a ∈ A

as the distribution of the initial state-action pair (s0, a0).
Therefore the dynamics of the state-action pairs (st, at)
form another Markov chain with transition matrix P̂ ∈
R|S||A|×|A||S|+ defined as

P̂π(s, a; s′, a′) = Pa(s, s′) · π(a′|s′).

First, let us prove that (II.5) is equivalent to (II.7). For the
ease of notation, we used the multi-indices. Let us view both
r and λ as vectors with s, a being a multi-index. Note that
(II.5) implies that for all s ∈ S

ξs =
∑
a′∈A

λsa′ − γ
∑
a′∈A

∑
s′∈S

Pa′(s
′, s)λs′a′ .

Multiplying both sides by π(a|s) = λsa∑
a′∈A λsa′

, we get

ξ̂sa = λsa − γ
∑
a′∈A

∑
s′∈S

Pa′(s
′, s) · π(a|s) · λs′a′

= λsa − γ
∑
a′∈A

∑
s′∈S

P̂π(s′, a′; s, a)λs′a′

for any s ∈ S, a ∈ A. If we write this equation in a compact
matrix form, we get

ξ̂ = (I − γP̂>π )λ.

Note that ‖γP̂>π ‖2 ≤ γ < 1, we know (I − γP̂>π )−1 =∑∞
i=0 γ

i(P̂ iπ)>. Consequently,

λ> = ξ̂>(I − γP̂π)−1 = ξ̂> + γξ̂>P̂π + γ2ξ̂>P̂ 2
π + · · ·



If we write the above equation in an elementwise way, we
get (II.7). Consequently, we also have

λ>r = ξ̂>r + γξ̂>P̂πr + γ2ξ̂>P̂ 2
πr + · · ·

= E

[ ∞∑
t=0

γtr̂stst+1at

∣∣∣∣ s0 ∼ ξ, at ∼ π(·|st)

]
,

which is as stated in (II.8)
Hence, one can recover the policy parameters through nor-
malization of the dual variable as π(a|s) = λsa/

∑
a′∈A λsa′

for all a ∈ A and s ∈ S, as detailed in Proposition 2.1.

III. CAUTION-SENSITIVE POLICY OPTIMIZATION

In this work, we prioritize definitions of risk in MDPs
that capture long-term behavior of the policy and permit the
derivation of computationally efficient algorithms. We focus
on optimizing the policy’s long-run behaviors that cannot be
described by any cumulative sum of rewards, for examples
the barrier risk and variance (Sec. III-B).

A. Problem Formulation

We focus on directly designing the long-term state-action
occupancy distribution, whose unnormalized version is the
dual variable λ := {λa}a∈A. Rather than only maximizing the
expected cumulative return, i.e., the typical objective in risk-
neutral MDP (e.g., (II.4)), we seek policies that incorporate
risk functions concerning the full distribution λ.

We propose a non-standard notion of risk: in standard
definitions, such as those previously mentioned, they are
typically risk measures of the cumulative rewards; by contrast,
here we augment the risk to be defined over the long-term
state-action occupancy distributions, which we dub caution
measures. Specifically, denote as ρ(λ) a caution function that
takes as input dual variables λ (unnormalized state-action
distributions) feasible to (II.4) and maps to the reals R. The
caution risk measures the fitness of the entire state path, rather
than just a cumulative sum over the path.

In pursuit of computationally efficient solutions, we hone
in on properties of the dual LP formulation of RL. The
caution-sensitive variant of (II.4) then takes the form:

maxλ≥0 〈λ, r〉 − cρ(λ)

s.t.
∑
a∈A

(I − γP>a )λa = ξ, (III.1)

‖λ‖1 = (1− γ)−1,

where c is a positive penalty parameter and we take ξ to be
the vector of uniform distribution without loss of generality,
i.e., ξ = 1

|S||A| · 1; and ‖λ‖1 :=
∑
s,a |λsa|. The constraints

require that λ be the unnormalized state-action distribution
corresponding to some policy. The last constraint is implied
by
∑
a∈A

(I−γP>a )λa = ξ, but we include it for clarity. In this

work, we consider the scenarios when ρ is convex, which
implies that the problem (III.1) is a convex optimization
problem that facilitates computationally efficient solutions.

Let us denote the optimal solution to the cautious policy
optimization problem (III.1) by λ∗. This λ∗ gives the

optimal long-term state-action occupancy distribution under
the caution risk. Let π∗ be the mixed policy given by

π∗(a|s) =
λ∗(s, a)∑
a′ λ
∗(s, a′)

.

We call this π∗ the optimal caution-sensitive policy. We
remark that with the introduction of the risk measure into
the dual form (III.1), the corresponding primal is no longer
the LP problem (II.3) but changes to one that incorporates
risk. The optimal caution-sensitive policy π∗ differs from the
optimal policy in the typical risk-neutral setting. Since the
LP structure is lost, the optimal risk-sensitive policy π∗ is
not guaranteed to be deterministic. Moreover, the Lagrangian
multipliers, denoted by v∗, for the risk-sensitive problem
(III.1) is no longer the risk-neutral value vector, meaning
that we are solving a different problem than (II.1). Indeed,
by defining caution in this way, we incorporate long-term
distributional risk into the dual domain of Bellman equation,
while sidestepping the computational challenges of time-
inconsistency.

B. Examples of Caution Risk
Next, we discuss several examples of the caution risk ρ to

clarify the problem setting (III.1).
Example 3.1 (Barrier risks): Caution risk can take the

form of barriers to guarantee that a policy’s long-term
behavior meets certain expectations. Two examples follow:
• Staying in safety set. Suppose we want to keep the state

trajectory within a safety set S̄ ⊂ S for more than 1 − δ
fraction of all time. In light of the typical barrier risk used
in constrained optimization, we define

ρ(λ) = − log
(
λ(S̄)− (1− δ)

)
,

where λ(S̄) = (1−γ)
∑
s,a λ(s, a)1s∈S̄ . Since λ(S̄) is linear

in λ, we can verify that the log barrier risk ρ is convex.
• Meeting multiple job requirements. Further, suppose there

are multiple tasks with strict requirements on their expected
returns 〈λ, rj〉 ≥ bj , j = 1, . . . ,m. One can transform these
return constraints into a log barrier given by

ρ(λ) = −
m∑
j=1

log (〈λ, rj〉 − bj) .

In this way, the optimal caution-sensitive policy will meet all
the job requirements for large enough penalty c.

Example 3.2 (Variance risk): In finance applications, one
canonical risk concern is the variance of return. To formulate
risk as variance, we first note that λ is an unnormalized
distribution, whose normalized counterpart is denoted as λ̂ :=
(1 − γ)λ. Then it holds that 〈λ̂, r〉 is the expected reward
accumulation. Then, the variance of return per timestep takes
the form

ρ(λ) = V ar(r̂ss′a|λ) = Eλ̂
[(
Eλ̂ [r̂ss′a]− r̂ss′a

)2]
(III.2)

where Eλ̂ := E(s,a,s′)∼λ̂×P(·|a,s). For ease of notation, denote
R ∈ R|S|×|A| with R(s, a) = Es′∼P(·|a,s)[r̂

2
ss′a]. Substituting

in these definitions, we may write

ρ(λ) = 〈λ̂, R〉 − 〈λ̂, r〉2, (III.3)



which is a quadratic function of the variable λ. Note that
the variance risk ρ(λ) is non-convex with respect to λ.
Alternatively, we consider a surrogate for the variance function
in (III.3) as

ρ(λ) = Eµ
[(
Eλ̂ [r̂ss′a]− r̂ss′a

)2]
= 〈λ̂, r〉2 − 2〈µ, r〉〈λ̂, r〉+ 〈µ,R〉 (III.4)

where µ is some predetermined distribution and Eµ :=
E(s,a,s′)∼µ×P(·|a,s). Note that this risk function in (III.4) is
convex in λ. We investigate the merit of choosing (III.3) and
(III.4) in later sections.

Example 3.3 (Divergence for incorporating priors):
Often in applications, we have access to demonstrations,
which can be used to learn a prior on the policy for
ensuring baseline performance. Let λ̄ be a prior state-action
distribution learned from demonstrations. Maintaining
baseline performance with respect to this prior, or
demonstration distribution, then can be encoded as the
Kullback-Liebler (KL) divergence between the normalized
distribution λ̂ = (1− γ)λ and the prior λ̄ stated as

ρ(λ) = KL
(
(1− γ)λ||λ̄

)
(III.5)

which is substituted into (III.1) to obtain a framework for
efficiently incorporating a baseline policy. In some scenarios,
existing demonstrations are only state trajectories without
revealing the actions taken. Then one may estimate the long-
term state-only distribution µ and define the risk as

ρ(λ) = KL

(
(1− γ)

∑
a

λa||µ

)
,

which measures the divergence between the marginalized
state occupancy distribution and the prior. In addition to KL,
one can also use other convex distances such as Wasserstein,
total variation, or even a simple quadratic.

IV. STOCHASTIC PRIMAL-DUAL POLICY GRADIENT

We shift focus to developing an algorithmic solution to the
caution-sensitive policy optimization problem (III.1). While
the problem upon first glance appears deterministic, the
transition matrices Pa are a priori unknown and we assume
the presence of a generative model. Such a generative model
is fairly common in control/RL applications where a system
simulator is available. For a given state action pair (s, a), the
generative model provides the next state s′ and the stochastic
reward r̂ss′a according to the unknown transition dynamics.

Thus, we propose methodologies based on Lagrangian
duality together with stochastic approximation. Given the
convexity of ρ, by virtue of duality, (III.1) admits an
equivalent formulation as a saddle point problem:

max
λ∈L

min
v∈V

L(v,λ)=〈λ,r〉− cρ(λ) + 〈ξ,v〉+
∑
a∈A

λ>a(γPa−I)v,

(IV.1)
where V should be R|S| in principle. However, we can later
on find a large enough compact set to replace the whole space

Algorithm 1 Stochastic Risk-Averse (Cautious) RL
Input: Sample size T . Parameter ξ= 1

|S| ·1. Stepsizes α, β>0.
Discount γ∈(0, 1). Constants M1,M2 >0, δ∈(0, 1).
Initialize: Arbitrary v1 ∈ V and λ1 := 1

|S||A|(1−γ) · 1 ∈ L.
for t = 1, 2, · · · , T
Set ζt := (1− δ)(1− γ)λt + δ

|S||A|1.
Sample (st, at) ∼ ζt and s̄t ∼ ξ.
Generate s′t ∼ P(·|at, st) & r̂sts′tat from generative model.
Construct ∇̂vL(vt, λt) [cf. (IV.8)] and ∂̂λL(vt, λt) [cf. (IV.9)]
Update v and λ as

vt+1 = ΠV(vt − α∇̂vL(vt, λt)) (IV.5)

and

λt+
1
2 =argmax

λ
〈∂̂λL(vt,λt),λ−λt〉 (IV.6)

− 1

(1−γ)β
KL

(
(1− γ)λ||(1− γ)λt

)
.

λt+1 =
λt+

1
2

(1− γ)‖λt+ 1
2 ‖1

. (IV.7)

Output: λ̄ := 1
T

∑T
t=1 λ

t and v̄ := 1
T

∑T
t=1 v

t.

without loss of optimality. By choosing ξ to satisfy ξ ≥ 0
and ‖ξ‖1 = 1, we define the dual feasible set L as

L := {λ : λ ≥ 0, ‖λ‖1 = (1− γ)−1}. (IV.2)

Given distribution ζ over S×A, define the stochastic approx-
imation of the risk-neutral component of the Lagrangian:

Lζ(s,a,s′),s̄(v, λ) := vs̄ + 1{ζsa>0} ·
λsa(r̂ss′a + γvs′ − vs)

ζsa
(IV.3)

where s̄ ∼ P(ξ) is a sample from the discrete distribution
defined by probability vector ξ. Then by direct computation,
when the support of ζ contains that of λ, i.e., supp(λ) ⊂
supp(ζ), we may write

L(v, λ)=E(s,a,s′)∼ζ×P(·|a,s),s̄∼ξ

[
Lζ(s,a,s′),s̄(v, λ)

]
−cρ(λ).

(IV.4)

Thus, we view (IV.1) as a stochastic saddle point problem.
We propose variants of stochastic primal-dual method

applied to (IV.1). To obtain the primal descent direction,
we note that if ζ is chosen such that supp(λ) ⊂ supp(ζ), an
unbiased estimator of the gradient of L w.r.t. v ∈ V is

∇̂vL(v, λ) := ∇vLζ(s,a,s′),s̄(v, λ) (IV.8)

= es̄ + 1{ζsa>0} ·
λsa
ζsa

(γes′ − es),

where es ∈ R|S| is a column vector with only the s-th entry
equaling to 1 and all other entries being 0. Moreover, a dual
subgradient of the instantaneous Lagrangian is given as

∂̂λL(v, λ) := 1{ζsa>0} ·
r̂ss′a + γvs′ − vs −M1

ζsa
·Es,a

−c∂̂ρ(λ)−M2 · 1, (IV.9)



where Es,a ∈ R|S|×|A| is a matrix with (s, a)-th entry
equal to 1 and all other entries equal to 0. ∂̂ρ(λ) is an
unbiased subgradient estimate of the convex but possibly
non-smooth function ρ, i.e. E[∂̂ρ(λ)] ∈ ∂ρ(λ). In (IV.9), M1

and M2 are the “shift” parameters specified in Lemma 5.3
by the convergence analysis in Section V. Note that since the
function ρ is often known in practice, a full subgradient u ∈
∂ρ(λ) may be used instead of an instantaneous approximate
∂̂ρ(λ). With appropriately defined shift parameters M1,M2 in
the subgradient estimator, if ζ > 0, then the dual subgradient
is biased with a constant shift:

E[∂̂λL(v, λ)] ∈ ∂λL(v, λ)− (M1 +M2) · 1.

With these estimates for the primal gradient and dual
subgradient of the Lagrangian (IV.4), we propose executing
primal-dual stochastic subgradient iteration [30], [31] with
the KL divergence in the dual domain. The detailed steps are
summarized in Algorithm 1. Employing KL divergence in
defining the dual update permits us to leverage the structure
of λ as a distribution to derive tighter convergence rates, as
detailed in Section V.

Algorithm 1 provides a model-free method for learning
cautious-optimal policies from transition samples. Each primal
and dual update can be computed easily based on a single
observation. Although Algorithm 1 is given in the tabular
form, its spirit of primal-dual stochastic approximation can
be generalized to work with function approximations in the
primal and dual spaces as the subject of future work.

V. CONVERGENCE ANALYSIS

In this section, we provide sample complexity results for
finding near-optimal solutions whose dependence on the size
of the state and action spaces is tight. Before delving into
these details, we state a technical condition on the caution
function ρ required for the subsequent analysis, which is that
we have access to a first-order oracle providing noisy samples
of its subgradient, and that the infinity norm of these samples
is bounded.

Assumption 5.1: The caution function ρ(λ) is convex but
possibly non-smooth, and it has bounded subgradients as

sup
λ∈L

sup
u∈∂ρ(λ)

‖u‖∞ ≤ σ <∞. (V.1)

Further, samples ∂̂ρ(λ) of its subgradients are unbiased and
have finite infinity norm:

E[∂̂ρ(λ)] ∈ ∂ρ(λ) , sup
λ∈L
‖∂̂ρ(λ)‖∞ ≤ σ. (V.2)

In our subsequent analysis, we treat σ as a known constant.
In all of Examples 3.1-3.3, the caution function ρ is explicitly
known, which yields ∂̂ρ(λ) ∈ ∂ρ(λ). For instance, in
Example 3.3, ρ(λ) = KL(λ̂ ||µ) for some fixed µ [cf. (III.5)],
the gradient takes the form

|∇λsa
ρ(λ)| =

∣∣∣(1− γ)
(

1 + log
(
λ̂sa/µsa

))∣∣∣
for any s ∈ S and a ∈ A. Then, we can ensure Assumption
5.1 by imposing an elementwise lower bound δ0 on µ and λ
s.t. µ ≥ δ0 ·1 and λ ≥ δ0 ·1. The constant δ0 may be chosen

extremely small, for instance, δ0 = min{10−15, |S|−1|A|−1}.
Consequently, we have

σ ≤ O
(
(1− γ)

(
1 + log

(
δ−1
0

)))
= O(1).

Next, we begin the analysis by noting that the saddle point
problem (IV.1) does not specify the feasible region V for the
variable v. However, the convergence necessitates V to be a
compact set rather than the entire R|S|. To disambiguate the
domain of v, next we derive a bounded region that contains
the primal optimizer v∗.

Lemma 5.2: If ξ > 0, then the primal optimizer v∗ satisfies

‖v∗‖∞ ≤ (1− γ)−1(1 + cσ). (V.3)

Therefore, we can define the feasible region V to be the
compact set

V :=

{
v ∈ R|S| : ‖v‖∞ ≤ 2

1 + cσ

1− γ

}
. (V.4)

The proof of Lemma 5.2 is provided in Appendix I of the
supplementary material [32]. We note that the factor of 2 is
incorporated to simplify the analysis.

Subsequently, we analyze the primal-dual convergence of
Algorithm 1 for solving (IV.1) (and the equivalently (III.1)).
Before providing the main theorem, we introduce a technical
result which defines convergence in terms of a form of duality
gap. The duality gap measures the distance of the Lagrangian
evaluations to a saddle point as defined by (IV.1).

Lemma 5.3 (Convergence of duality gap): For
Algorithm 1, select shift parameters M1 = 4(1+cσ)

1−γ

and M2 = cσ, δ ∈ (0, 1
2 ), β = 1−γ

1+cσ

√
log(|S||A|)
T |S||A| , and

α =
√
|S|
T (1 + cσ). Let λ̄ and v̄ be the output of Algorithm

1 and let λ∗ be the optimum. Then for the output of
Algorithm 1, we have

E[L(v̄,λ∗)−min
v∈V

L(v, λ̄)] (V.5)

≤ O

(√
|S||A| log(|S||A|)

T
· 1 + 2cσ

(1− γ)2

)
.

As a result, to guarantee E[L(v̄, λ∗)−minv∈V L(v, λ̄)] ≤ ε,
the amount of samples needed is

T = Θ

(
|S||A| log(|S||A|)(1 + 2cσ)2

(1− γ)4ε2

)
. (V.6)

The proof of this Lemma is provided in Appendix II of the
supplementary material [32].

We may then use the convergence of duality gap to char-
acterize the sub-optimality and constraint violation attained
by the output of Algorithm 1 for the problem (III.1). Hence,
the main result is summarized in Theorem 5.4 next.

Theorem 5.4: (Convergence to optimal caution-
sensitive policies): Let the parameters M1, M2, δ, β, and α,
as defined in Theorem 5.3, if λ̄ is the output of Algorithm 1
after T iterations, then the constraint violation of the original
problem (III.1) satisfies
λ̄ ≥ 0,

∥∥λ̄∥∥
1

= (1− γ)−1

∥∥∑
a∈A(I − γP>a )λ̄a − ξ

∥∥
1
≤ (1−γ)ε

1+cσ ≤ (1− γ)ε.

(V.7)



Moreover, the sub-optimality of (III.1) is given as

E[(〈λ∗, r〉 − cρ(λ∗))− (〈λ̄, r〉 − cρ(λ̄))] ≤ ε (V.8)
Eqs. (V.7) and (V.8) showed the output solution is ε-feasible
and ε-optimal. Note that ε determines the number of samples
T as given in (V.6).

Proof: The first row of (V.7) is directly satisfied due to
the feasibility of λ̄ ∈ L. Now we prove the second row of
(V.7). When the parameters are chosen according to Lemma
5.3, we know

ε ≥ E[L(v̄, λ∗)−min
v∈V

L(v, λ̄)]. (V.9)

For the ease of notation, denote C := (1 − γ)−1(1 + cσ).
Then substitute the details of L we get

min
v∈V

L(v, λ̄) = min
‖v‖∞≤2C

〈λ̄, r〉 − cρ(λ̄) + 〈ξ, v〉

+
∑
a∈A

λ̄a(γPa − I)v (V.10)

=〈λ̄, r〉 − cρ(λ̄)− 2C

∥∥∥∥∑
a∈A

(I − γP>a )λ̄a − ξ
∥∥∥∥

1

.

By the feasibility of λ∗, namely,
∑
a∈A(I−γP>a )λ∗a−ξ = 0,

we have

L(v̄, λ∗) =〈λ∗, r〉 − cρ(λ∗) + 〈ξ, v̄〉 (V.11)

+
∑
a∈A

(λ∗a)>(γPa − I)v̄ = 〈λ∗, r〉 − cρ(λ∗).

Substituting (V.10) and (V.11) into (V.9) yields

E

[
(〈λ∗, r〉 − cρ(λ∗))−

(
〈λ̄, r〉 − cρ(λ̄)

)
+ 2C

∥∥∑
a∈A

(I − γP>a )λ̄a − ξ
∥∥

1

]
≤ ε. (V.12)

Actually, this inequality has already proved the bound (V.8)
in terms of the objective value of problem (III.1). Also, by
the feasibility of λ∗, the convexity of ρ, and the optimality
condition (I.4), we have

(〈λ∗, r〉 − cρ(λ∗))−
(
〈λ̄, r〉 − cρ(λ̄)

)
+
〈
v∗,
∑
a∈A

(I − γP>a )λ̄a − ξ
〉

= (〈λ∗, r〉 − cρ(λ∗))−
(
〈λ̄, r〉 − cρ(λ̄)

)
+
〈
v∗,
∑
a∈A

(I − γP>a )λ̄a −
∑
a∈A

(I − γP>a )λ∗a
〉

≥
∑
a∈A

〈
(I − γPa)v∗ − ra + cu∗a, λ̄a − λ∗a

〉
≥ 0, (V.13)

where u∗ ∈ ∂ρ(λ∗) is defined in (I.4), and u∗a :=
[u∗1a, ..., u

∗
|S|a]> is column vector. Immediately, this implies

(〈λ∗, r〉 − cρ(λ∗))−
(
〈λ̄, r〉 − cρ(λ̄)

)
(V.14)

≥ −
〈
v∗,
∑
a∈A

(I − γP>a )λ̄a − ξ
〉

≥ −‖v∗‖∞
∥∥∑
a∈A

(I − γP>a )λ̄a − ξ
∥∥

1

≥ −C
∥∥∑
a∈A

(I − γP>a )λ̄a − ξ
∥∥

1
.

where we used the fact that ‖v∗‖∞ ≤ C proved in Lemma
5.2. Substitute (V.14) into (V.12) gives

E
[
C
∥∥∑
a∈A

(I − γP>a )λ̄a − ξ
∥∥

1

]
≤ ε.

Divide both sides by C = (1−γ)−1(1+cσ) proves inequality
(V.7).

Theorem 5.4 suggests that to get ε-optimal policy and its
corresponding state-action distribution, the sample complexity
has near-linear dependence (up to logarithmic factors) on the
sizes of S and A. This matches the optimal dependence in
the risk-neutral case, see e.g. [31], [33], [34] which proves
that Algorithm 1 is sample-efficient.

VI. EXPERIMENTAL RESULTS

In this section, we experimentally evaluate the proposed
technique for incorporating risk or other sources of ex-
ogenous information into RL training. In particular, we
consider a setting in which an agent originally learns in
the risk-neutral sense of (II.2), i.e., focusing on expected
returns. The MDP we focus on is a 10 × 10 grid with
each state permitting for four possible actions (moving
A := {up,down,left, and right}). For the transition
model, given the direction of the previous action selection,
the agent movies in the same direction with probability p
and moves in the different direction with probability 1− p,
and moves backwards with null probability. For instance,
in a given state action pair (s, a), suppose the action a
selected is up. Then, the next action will be up with prob
p and {left, or right} with prob 1 − p, and down
with null probability. Overall, this means that the transition
matrix has four nonzero sequences of likelihoods along the
main diagonal, i.e., it is quad-diagonal. For the experiments,
we consider the caution-sensitive formulation presented in
Examples 3.2 and 3.3 which respectively correspond to
quantifying risk via the variance and the KL divergence
to a previously learned policy which serves as a prior. We
append videos (links in the footnote12) to the submission
which visualize the safety of risk-awareness during training.

A. Variance-Sensitive Policy Optimization

The variance risk given in Example 3.2 characterizes the
statistical robustness of the rewards from a policy. To evaluate
the merit of this definition, consider the maze example with

1https://tinyurl.com/sk4lddb
2 https://tinyurl.com/tlcl3m2

https://tinyurl.com/sk4lddb
https://tinyurl.com/tlcl3m2


(a) Reward dist. (b) Risk neutral (c) Risk averse

Fig. 1. Experiment on grid world with variance as the risk. (a) Reward
distribution for the Maze environment; (b) Risk neutral and (c) Risk averse
trajectories, respectively, from start to goal. The trajectory resulting from
greedily following the risk-averse policy avoids negative reward states.
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Fig. 2. (a) Convergence of the dual objective [cf. (III.1)]; Sample mean
return (b) and variance (c) over 100 simulated trajectories. Observe the
expected reward return is comparable while the risk-averse policy attains
lower variance, and is thus more reliable.

the rewards distribution as described in Fig. 1(a). There are
two ways to go from start to destination. The reward of
dark green areas is more negative than lighter shades of
green, and thus it is riskier to be near darker green in terms
of the returns of a trajectory. We display a sample path of
the Markov chain obtained by solving the variance-sensitive
policy optimization problem as Fig. 1(c), whereas the one
based on the risk-neutral (classical) formulation is shown in
Fig. 1(b). Clearly, the risk-averse one avoids the dark green
areas and collects a sequence of more robust rewards, yet
still reaches the goal. The convergence of objective is plotted
in Fig. 2(a) for the proposed algorithm. Further, we plot
the associated sample mean and variance of the discounted
return over number of training indices in Figs. 2(b) and
2(c), respectively. Observe that the risk-averse policy yields
comparable mean reward accumulation with reduced variance,
meaning it more reliably reaches the goal without visiting
unwanted states whose rewards are negative.

B. Caution as Proximity to a Prior

When a prior is available in the form of some baseline
state-action distribution µ , KL divergence to the baseline
makes sense as a measure of caution [cf. (III.5)] as stated
in Example 3.3. To evaluate this definition, consider the
setting where the baseline µ is a risk-neutral policy (shown
in Fig. 3(a)) learned by solving (II.4) with a reward that
is highly negative r = −5 in the dark green area, strictly
positive r = 0.3 in the light green area, and r = 1 at the
goal in the bottom right denoted by G in Fig. 3(a). The
transition probabilities are defined by p = 0.4. Then, the
resulting risk-neutral policy is used as a baseline policy for a
drifted MDP whose reward is r = 0 for the dark green area

(a) µ (b) Risk neutral (c) Risk averse

Fig. 3. Results for the learning with demonstration µ. We have used KL
divergence as the risk function for these results. (a) The given demonstration,
(b) Risk neutral solution, (c) Risk averse solution. Note that incorporating
KL divergence yields a policy that avoids unrewarding states (red block in
(b) and (c)).
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(b) Time in unrewarding states

Fig. 4. We plot the running average of (a) Expected reward return, (b)
percentage of time we visit the unrewarding states. Note that the prior
demonstration helps in the faster convergence as clear from (a). Further, the
KL divergence based risk helps to avoid the visitation of the unrewarding
states as clear from the result in (b).

while identical elsewhere, and whose transition dynamics are
defined by likelihood parameter p = 0.6. The overarching
purpose is that although the reward landscape and transition
dynamics changed, the “lessons” of past learning may still
be incorporated.

The resulting policy learned from this procedure, as
compared with the risk-neutral policy, are visualized in
Figures 3(b) and 3(c), respectively. Observe that the policy
associated with incorporating past experience in the form
of policy µ has explicitly pushed avoidance of the dark
green region, whereas the risk-neutral policy resulting from
(II.4) does not. Thus, past (negative) experiences may be
incorporated into the learned policy. This hearkens back to
psychological experiments on mice: if its food supply is
electrified, then a mouse will refuse to eat, even after the
electricity is shut off, a form of fear conditioning. Further, we
plot the associated discounted return and empirical occupancy
of negative reward states with the iteration index of the
optimization procedure in Algorithm 1 in Fig. 4. Overall,
then, the incorporation of prior demonstrations results in the
faster learning (see Fig. 4(a)) and reduces the proportion of
time spent in unrewarding states as evidenced by Fig. 4(b).

VII. CONCLUSIONS

In this work, we proposed a new definition of risk
named caution which takes as input unnormalized state-
action occupancy distributions, motivated by the dual of
the LP formulation of the MDP. To solve the resulting risk-
aware RL in an online model-free manner, we proposed a
variant of stochastic primal-dual method to solve it, whose



sample complexity matches optimal dependencies of risk-
neutral problem. Experiments illuminated the usefulness of
this definition in practice. Future work includes deriving
the Bellman equations associated with cautious policy op-
timization (III.1), generalizations to continuous spaces, and
broadening caution to encapsulate other aspects of decision-
making such as inattention and anticipation.
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SUPPLEMENTARY MATERIAL FOR “BEYOND CUMULATIVE RETURNS VIA REINFORCEMENT LEARNING
OVER STATE-ACTION OCCUPANCY MEASURES”

APPENDIX I
PROOF OF LEMMA 5.2

Proof: Consider the min-max saddle point problem,

max
λ≥0

min
v∈R|S|

L(v,λ)=〈λ,r〉 − cρ(λ) + 〈ξ,v〉+
∑
a∈A

λ>a(γPa −I)v, (I.1)

Then (λ∗, v∗) solves this saddle point problem if and only if

λ∗ = argmax
λ≥0

L(v∗, λ) and
∑
a∈A

(I − γP>a )λ∗a − ξ = 0. (I.2)

A remark is that, this is also the KKT condition for the original convex problem (III.1). Due to the concavity of L(v∗, λ) for
any fixed v∗, the condition λ∗ = argmax

λ≥0
L(v∗, λ) is equivalent to the existence of a subgradient w∗ ∈ ∂λL(v∗, λ∗) s.t.

〈w∗, λ− λ∗〉 ≤ 0 for ∀λ ≥ 0. (I.3)

If we use u∗ to denote the specific subgradient in ∂ρ(λ∗) that consists w∗. For any fixed s, a, we know w∗sa = −(es −
γPas)

>v∗ + rsa − cu∗sa. If we choose λs′a′ = λ∗s′a′ for ∀(s′, a′) 6= (s, a), (I.3) further implies(
(es − γPas)>v∗ − rsa + cu∗sa

)
(λsa − λ∗sa) ≥ 0,

where Pas is a column vector, with Pas(s′) = P(s′|a, s). Combine this inequality with (I.2), we can formally write the final
optimality condition as follows.

∃u∗ ∈ ∂ρ(λ∗) s.t.


∑
a∈A

(I − γP>a )λ∗a = ξ, λ∗ ≥ 0,(
(es − γPas)>v∗ − rsa + cu∗sa

)
(λsa − λ∗sa) ≥ 0, ∀s ∈ S,∀a ∈ A,∀λsa ≥ 0.

(I.4)

By (II.7) of Proposition 2.1, we know that∑
a∈A

λ∗sa ≥
∑
a∈A

Prob
(
i0 = s, a0 = a|i0 ∼ ξ, a0 ∼ π(·|i0)

)
= ξs > 0 for ∀s ∈ S.

Therefore, for any s ∈ S , there exists an as such that λ∗sas > 0. Therefore, the second inequality of the optimality condition
(I.4) implies that,

(es − γPass)>v∗ − rsas + cu∗sas = 0 for ∀s ∈ S.

Let us denote r̃ := [r1a1 , · · · , r|S|a|S| ]
> ∈ R|S|, ũ := [u∗1a1 , · · · , u

∗
|S|a|S|

]> ∈ R|S| and P̃ := [Pa11, · · · , Pa|S||S|] ∈ R|S|×|S|.
Then we can write (

I − γP̃>
)
v∗ = r̃ − cũ.

As a result,

1 + cσ ≥ ‖r̃ − cũ‖∞ = ‖(I − γP̃>)v∗‖∞ ≥ ‖v∗‖∞ − ‖γP̃>v∗‖∞ ≥ (1− γ)‖v∗‖∞,

which implies the statement of Lemma 5.2.

APPENDIX II
PROOF OF LEMMA 5.3

Proof: To make the proof of this result clearer, we will separate part of the major steps into several different lemmas.
Lemma 2.1: Suppose the iterate sequence {vt} is updated according to the rule (IV.5) in Algorithm 1. Then for any t,

〈∇vL(vt, λt), vt − v〉 ≤ 1

2α
(‖vt − v‖2 − ‖vt+1 − v‖2) +

α

2
‖∇̂vL(vt, λt)‖2

+ 〈∇vL(vt, λt)− ∇̂vL(vt, λt), vt − v〉. (II.1)
The proof of this lemma is provided in Appendix II-A.

Lemma 2.2: Suppose the iterate sequence {λt} is updated according to the rule (IV.6) and (IV.7) in Algorithm 1. For ∀t,

−〈wt, λt − λ〉 ≤ 1

(1− γ)β

(
KL

(
(1− γ)λ || (1− γ)λt

)
−KL

(
(1− γ)λ || (1− γ)λt+1

))
+
β

2

∑
s,a

λtsa(∆t
sa)2 + 〈∂̂λL(vt, λt)− wt, λt − λ〉, (II.2)



where wt := E
[
∂̂λL(vt, λt)

∣∣λt, vt]+ (M1 +M2) · 1 ∈ ∂λL(vt, λt) is a subgradient vector.
The proof of this lemma is provided in Appendix II-B. Based on these two lemmas, we start the proof of Theorem 5.3.
Note that by definition, v̄ = 1

T

∑T
t=1 v

t and λ̄ = 1
T

∑T
t=1 λ

t. Define v̄∗ := argminv∈V L(v, λ̄). Then by the convex-concave
structure of L we have

L(v̄, λ∗)− L(v̄∗, λ̄) ≤ 1

T

T∑
t=1

(
L(vt, λ∗)− L(v̄∗, λt)

)
(II.3)

=
1

T

T∑
t=1

(
L(vt, λ∗)− L(vt, λt) + L(vt, λt)− L(v̄∗, λt)

)
≤ 1

T

T∑
t=1

(
−〈wt, λt − λ∗〉+ 〈∇vL(vt, λt), vt − v̄∗〉

)
,

where the first line applies Jensen’s inequality and last line is due to the convexity of L(·, λt) and the concavity of L(vt, ·).
Note that by specifying v = v̄∗ in (II.1) and λ = λ∗ in (II.2), we can sum up the inequlities (II.1) and (II.2) for t = 1, ..., T
to yield

1

T

T∑
t=1

(
−〈wt, λt − λ∗〉+ 〈∇vL(vt, λt), vt − v̄∗〉

)
≤
KL

(
(1−γ)λ∗||(1− γ)λ1

)
T (1− γ)β︸ ︷︷ ︸

T1

+
β

2T

T∑
t=1

∑
s,a

λtsa(∆t
sa)2

︸ ︷︷ ︸
T2

+
1

T

T∑
t=1

〈∂̂λL(vt, λt)−wt, λt−λ∗〉︸ ︷︷ ︸
T3

+
‖v1 − v̄∗‖2

2Tα︸ ︷︷ ︸
T4

+
α

2T

T∑
t=1

‖∇̂vL(vt, λt)‖2︸ ︷︷ ︸
T5

+
1

T

T∑
t=1

〈∇vL(vt, λt)− ∇̂vL(vt, λt), vt − v̄∗〉︸ ︷︷ ︸
T6

.

Substitute this inequality into (II.3) and take the expectation on both sides, we get

E[L(v̄, λ∗)−min
v∈V

L(v, λ̄)] ≤
6∑
i=1

E[Ti]. (II.4)

For the E[Ti]’s, the following bounds hold with detailed derivation provided in Appendix II-C:

E[T1] ≤ log(|S||A|)
T (1− γ)β

, E[T2] ≤ 4βc2σ2

1− γ
+

128β|S||A|(1 + cσ)2

(1− γ)3
, E[T3] = 0,

E[T4] ≤ 8|S|(1 + cσ)2

Tα(1− γ)2
, E[T5] ≤ 27α

2(1− γ)2
, E[T6] ≤

3
√

3|S|(1 + cσ)√
T (1− γ)2

.

Substitute these bounds for E[Ti]’s into inequality (II.4) we get

E[L(v̄, λ∗)−min
v∈V

L(v, λ̄)] ≤ log(|S||A|)
T (1− γ)β

+
4βc2σ2

1− γ
+

128β|S||A|(1 + cσ)2

(1− γ)3

+
8|S|(1 + cσ)2

Tα(1− γ)2
+

27α

2(1− γ)2
+

3
√

3|S|(1 + cσ)√
T (1− γ)2

. (II.5)

If we choose β = 1−γ
1+cσ

√
log(|S||A|)
T |S||A| and α =

√
|S|
T (1 + cσ), we have

E[L(v̄, λ∗)−min
v∈V

L(v, λ̄)] ≤ O

(√
|S||A| log(|S||A|)

T
· 1 + cσ

(1− γ)2

)
,

which completes the proof.



A. Proof of Lemma 2.1

Proof: Consider the update rule of v provided in (IV.5). For any v ∈ V , it holds that

‖vt+1 − v‖2 = ‖ΠV(vt − α∇̂vL(vt, λt))− v‖2

≤ ‖vt − α∇̂vL(vt, λt)− v‖2

= ‖vt − v‖2 + α2‖∇̂vL(vt, λt)‖2 − 2α〈∇̂vL(vt, λt), vt − v〉
= ‖vt − v‖2 + α2‖∇̂vL(vt, λt)‖2 − 2α〈∇̂vL(vt, λt)−∇vL(vt, λt) +∇vL(vt, λt), vt − v〉.

Rearranging the above inequality yields

2α〈∇vL(vt, λt), vt − v〉 ≤ ‖vt − v‖2 − ‖vt+1 − v‖2 + α2‖∇̂vL(vt, λt)‖2 − 2α〈∇̂vL(vt, λt)−∇vL(vt, λt), vt − v〉.

Deviding both sides by 2α proves lemma.

B. Proof of Lemma 2.2

Proof: Now let us consider the update rule of λ given by (IV.6) and (IV.7). Note that in the subproblem (IV.6), the
problem is separable for each component of λ and allows for a closed form solution, i.e.,

λ
t+ 1

2
sa =argmax

λsa

∆t
saλsa −

1

(1− γ)β
(1− γ)λsa log

(
(1− γ)λsa
(1− γ)λtsa

)
(II.6)

=λtsa · exp{β∆t
sa},

where we denote ∆t
sa to be the (s, a)-th component of ∂̂λL(vt, λt). Then the next iterate is constructed as

λt+1 =
λt+

1
2

(1− γ)‖λt+ 1
2 ‖1

.

Or in a more elementary way, we define

λt+1
sa =

λtsa · exp{β∆t
sa}

(1− γ)
∑
s′,a′ λ

t
s′a′ · exp{β∆t

s′a′}
. (II.7)

It is straightforward that λt+1 ∈ L. As a result, for any λ ∈ L,

KL
(
(1− γ)λ || (1− γ)λt+1

)
−KL

(
(1− γ)λ || (1− γ)λt

)
(II.8)

=(1− γ)
∑
s∈S

∑
a∈A

(
λsa log

(
λsa

λt+1
sa

)
− λsa log

(
λsa
λtsa

))
=(1− γ)

∑
s∈S

∑
a∈A

λsa log

(
λtsa
λt+1
sa

)

=(1− γ)
∑
s∈S

∑
a∈A

λsa

log

(1− γ)
∑
s′,a′

λts′a′ · exp{β∆t
s′a′}

− β∆t
sa

 (II.9)

= log

(1− γ)
∑
s′,a′

λts′a′ · exp{β∆t
s′a′}

− (1− γ)β
∑
s∈S

∑
a∈A

λsa∆t
sa

= log

(
(1− γ)

∑
s,a

λtsa · exp{β∆t
sa}

)
− (1− γ)β〈∂̂λL(vt, λt), λ〉. (II.10)

The equality in (II.9) is obtained by using the elementary definition of λt+1
sa in (II.7); The last equality of (II.10) is obtained

by applying the definition of ∆t
sa. Note that

∆t
sa =


r̂sts′tat

+γvs′t
−vst−M1

ζtstat

− c
(
∂̂ρ(λt)

)
stat
−M2, if (s, a) = (st, at),

−c
(
∂̂ρ(λt)

)
stat
−M2, if (s, a) 6= (st, at).



When we choose M1 = 4(1− γ)−1(1 + cσ) and M2 = cσ, we can guarantee that ∆t
sa ≤ 0 for all s ∈ S, a ∈ A. Therefore,

by the fact that ex ≤ 1 + x+ x2

2 for all x ≤ 0 and log(1 + x) ≤ x for all x > −1, we have

log

(
(1− γ)

∑
s,a

λtsa · exp{β∆t
sa}

)
≤ log

(
(1− γ)

∑
s,a

λtsa ·
(
1 + β∆t

sa +
β2

2
(∆t

sa)2
))

= log

(
1 + (1− γ)β〈∂̂λL(vt, λt), λt〉+

(1− γ)β2

2

∑
s,a

λtsa(∆t
sa)2

)

≤(1− γ)β〈∂̂λL(vt, λt), λt〉+
(1− γ)β2

2

∑
s,a

λtsa(∆t
sa)2. (II.11)

Utilizing the upper bound of (II.11) into the right hand side of (II.8) results in

KL
(
(1− γ)λ || (1− γ)λt+1

)
−KL

(
(1− γ)λ || (1− γ)λt

)
≤ (1− γ)β2

2

∑
s,a

λtsa(∆t
sa)2 + (1− γ)β〈∂̂λL(vt, λt)− wt + wt, λt − λ〉.

Rearranging the terms and deviding both sides by (1− γ)β proves this lemma.

C. Bounding the E[Ti]’s

Step 1. Bounding E[T1]. Note that λ1 = 1
(1−γ)|S||A| , we know

E[T1] =
1

T (1− γ)β

∑
s,a

(1− γ)λ∗sa
(
log(λ∗sa)− log(|S|−1|A|−1)

)
(II.12)

≤ 1

T (1− γ)β

∑
s,a

(1− γ)λ∗sa log(|S||A|)

=
log(|S||A|)
T (1− γ)β

.

Step 2. Bounding E[T2]. For each t, we have

E

[∑
s,a

λtsa(∆t
sa)2

∣∣vt, λt] = Est,at

[∑
s,a

λtsa

(
r̂ss′a + γvs′ − vs −M1

ζtsa
· 1(s,a)=(st,at) − c

(
∂̂ρ(λt)

)
sa
−M2

)2 ∣∣∣∣vt, λt
]

≤ 2Est,at

[∑
s,a

λtsa

(
c
(
∂̂ρ(λt)

)
sa

+M2

)2

+ λtst,at

(
r̂sts′tat + γvs′t − vst −M1

ζtstat

)2 ∣∣∣∣vt, λt
]

≤ 8(1− γ)−1c2σ2 + 2
∑
s,a

λtsaζ
t
sa

(
r̂ss′a + γvs′ − vs −M1

ζtsa

)2

≤ 8(1− γ)−1c2σ2 + 2
∑
s,a

λtsa (r̂ss′a + γvs′ − vs −M1)
2

(1− δ)(1− γ)λtsa + δ
|S||A|

≤ 8(1− γ)−1c2σ2 + 2
∑
s,a

64λtsa(1− γ)−2(1 + cσ)2

(1− δ)(1− γ)λtsa + δ
|S||A|

≤ 8(1− γ)−1c2σ2 +
128|S||A|(1 + cσ)2

(1− δ)(1− γ)3

≤ 8(1− γ)−1c2σ2 +
256|S||A|(1 + cσ)2

(1− γ)3
.

The second row follows the definition of ∆t
sa; The 4-th row is due to the assumption that ‖∂̂ρ‖∞ ≤ σ; In the 5-th we

substitute the definition of ζtsa provided in Algorithm 1; In the 6-th row we substitute the detailed value of M1; The 8-th
row is because δ ∈ (0, 1

2 ). As a result, we have

E[T2] =
β

2T

T∑
t=1

E

[∑
s,a

λtsa(∆t
sa)2

]
≤ 4βc2σ2

1− γ
+

128β|S||A|(1 + cσ)2

(1− γ)3
. (II.13)



Step 3. Bounding E[T3], because λ∗ is a constant, for each t, we have

E[〈∂̂λL(vt, λt)− wt, λt − λ〉|vt, λt] = −〈(M1 +M2) · 1, λt − λ∗〉 = 0,

where we have applied the fact that
∑
s,a λ

t
sa =

∑
s,a λ

∗
sa, and wt = E[∂̂λL(vt, λt)|vt, λt] + (M1 +M2) · 1 when ζt > 0.

As a result,

E[T3] =
1

T

T∑
t=1

E
[
〈∂̂λL(vt, λt)− wt, λt − λ∗〉

]
= 0. (II.14)

Step 4. Bounding E[T4], we have

E[T4] =
1

2Tα
E
[
‖v1 − v̄∗‖2

]
≤ 8|S|(1 + cσ)2

Tα(1− γ)2
. (II.15)

Step 5. Bounding E[T5], applying the expression (IV.8) yields

E
[
‖∇̂vL(vt, λt)‖2

∣∣vt, λt] = Est,at,s′t,s̄t

[∥∥es̄t +
λtstat
ζtstat

(γes′t − est)
∥∥2
∣∣∣∣vt, λt]

= Est,at,s′t,s̄t

[∥∥es̄t +
λtstat

(1− δ)(1− γ)λtstat + δ
|S||A|

(γes′t − est)
∥∥2
∣∣∣∣vt, λt

]

≤ Est,at,s′t,s̄t

[
3 +

3γ2 + 3

(1− δ)2(1− γ)2

∣∣∣∣vt, λt]
≤ 27

(1− γ)2
.

Consequently,

E[T5] =
α

2T

T∑
t=1

E
[
‖∇̂vL(vt, λt)‖2

]
≤ 27α

2(1− γ)2
. (II.16)

Step 6. Bounding E[T6]. Because v̄∗ is a random variable dependent on ∇̂vL(vt, λt) we will need the following proposition.

Proposition 2.3 ([35]): Let Z ⊆ Rd be a convex set and w : Z → R be a 1 strongly convex function with respect to
norm ‖·‖ over Z . With the assumption that for all x ∈ Z we have w(x)−minx∈Z w(x) ≤ 1

2D
2, then for any martingale

difference sequence {Zk}Kk=1 ∈ Rd and any random vector z ∈ Z , it holds that

E

[
K∑
k=1

〈Zk, x〉

]
≤ D

2

√√√√ K∑
k=1

E
[
‖Zk‖2∗

]
,

where ‖·‖∗ denotes the dual norm of ‖·‖.
With this proposition, and note that E

[
〈∇̂vL(vt, λt)

∣∣vt, λt] = ∇vL(vt, λt), we have

E[T6] =
1

T

T∑
t=1

E
[
〈∇vL(vt, λt)− ∇̂vL(vt, λt), vt − v̄∗〉

]
(II.17)

=
1

T

T∑
t=1

E
[
〈∇vL(vt, λt)− ∇̂vL(vt, λt), v̄∗〉

]

≤
√
|S|(1 + cσ)

T (1− γ)

√√√√ T∑
t=1

E
[
‖∇vL(vt, λt)− ∇̂vL(vt, λt)‖2

]

≤
√
|S|(1 + cσ)

T (1− γ)

√√√√ T∑
t=1

E
[
‖∇̂vL(vt, λt)‖2

]
≤

√
|S|(1 + cσ)

T (1− γ)

√
2T

α
E[T5]

≤
3
√

3|S|(1 + cσ)√
T (1− γ)2

.
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