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Abstract— In this paper, we present a novel Heavy-Tailed
Stochastic Policy Gradient (HT-PSG) algorithm to deal with the
challenges of sparse rewards in continuous control problems.
This issue is handled in the literature primarily using either
reward shaping or demonstrations. However, obtaining high-
quality demonstrations is quite expensive and sometimes even
impossible. This becomes further complicated when we are
in continuous state-action spaces, which is typical in robot
learning. In this paper, we propose a heavy-tailed policy
parametrization along with a modified momentum-based pol-
icy gradient tracking scheme (HT-SPG) to induce a stable
exploratory behavior to the algorithm without no or limited
access to demonstrations. We test the performance of HT-SPG
on various benchmark tasks of continuous control with sparse
rewards such as 1D Mario, Pathological Mountain Car, Sparse
Pendulum in OpenAI Gym, and Sparse MuJoCo environments
(Hopper-v2). We show consistent performance improvement
across all tasks in terms of high average cumulative reward.
HT-SPG also demonstrates improved convergence speed with
minimum samples thereby emphasizing the sample efficiency
of our proposed algorithm.

I. INTRODUCTION

Reinforcement learning (RL) has been employed with
great success in several continuous control robotic tasks such
as grasping [1], motion planning [2], and navigation [3].
The key underlying idea in RL is to explore in an unknown
environment, collect rewards, and then move to maximize
the reward collection. In the real world, designing dense
rewards is challenging for robotic tasks such as manipulation
and navigation [4]. Reward engineering for robotic tasks
is difficult due to complex state space representations and
usually requires manually-designed perception systems of the
environment [5]. Hence, it makes sense to work directly with
naturally specified sparse rewards [6]–[8]. For example, it
is much easier to specify a binary reward (1 for successful
completion of a task and 0 otherwise) than to come up
with a dense reward structure. However, learning with sparse
rewards is much more challenging because it results in
the Hessian of the value function with respect to policy
parameters being ill-conditioned. It also imposes the need
to sample multiple trajectories in order to have a nontrivial
estimate of the value function, which is sample inefficient
[9].

Furthermore, learning from sparse rewards in continuous
control robotic tasks becomes even more challenging (as
mentioned in Fig. 1) because they exhibit continuous state
and action spaces. For instance, in manipulation tasks, joint
angles of robots are continuous, and in navigation tasks, the
pose of robots and control inputs are continuous. RL in con-

(a) Sparse Inverted Pendulum. (b) Sparse Hopper-v2.

Fig. 1: Sparse reward continuous control robotic environ-
ments. (a) Sparse Inverted Pendulum task of OpenAI Gym
[11]. The state-space includes position of the free-end of the
Pendulum in Cartesian coordinates (x, y) and velocity. There
is only one continuous action that represents the angular
torque ∈ [−2, 2]. A non-zero reward is given only when the
agent reaches a specific angle (from −2 to 2 degrees), which
is an instance of sparse reward. (b) One-legged hopper from
Hopper-v2 environment in MuJoCo. This is a continuous
control robotic task with 12-dimensional state space and 3-
dimensional action space. The goal is to stand for as long
as possible and the episodes end when the hopper fell over,
which is defined by thresholds on the torso height and angle.
A reward of +1 is provided only after the agent moves
forward over 2 units from its initial position. The reward
here is also sparse in nature.

tinuous control problems is hard because it’s hard to compute
expectations with respect to continuous state distributions
and continuous actions to evaluate value functions [10].

The issue of sparse rewards is usually dealt with in
literature either through either reward shaping [12]–[14] or
utilizing expert demonstrations [7], [15]–[18]. Intuitively,
both of these approaches try to induce effective exploration
into the sparse reward environment by providing surrogate
rewards. Reward shaping approaches modify the reward
feedback to motivate the agent to visit unexplored states in
the environment. For instance, authors in [19] induce such
behaviors via intrinsic curiosity, and [20] utilizes information
to motivate the exploration. Another line of work utilizes
expert’s demonstrations to learn effectively in sparse reward
environments [7], [8], [14], [21]. The main idea here is
to either use available demonstration to clone an expert’s
behavior (imitation learning) or just utilize demonstrations to
provide additional rewards to guide the exploration [7], [8].



But the major limitation of these approaches depends on the
quality of the expert demonstrations. If the demonstrations
are not sub-optimal or not good, these approaches fail badly.
Apart from that, obtaining a high-quality demonstration is
quite expensive, especially in robotic environments [1].

In contrast to existing approaches to deal with sparse
reward settings, in this work, we follow a different route and
take motivation from the global convergence results in tabular
MDP settings [22]. A crucial enabler for learning global
optimal policies in [22] is the idea of persistent exploration,
which helps to implicitly induce sufficient exploration in
the state space. This ensures that the probability of taking
any action in a given state is always non-zero, which would
help to visit the complete state space and look for rewards.
Recently, authors in [23] have extended the idea of persistent
exploration to continuous spaces and have proposed to utilize
heavy-tailed policies to avoid convergence of policy gradient
methods to spurious local maximas. Taking motivation from
[23], we ask the following question

“Can heavy-tailed policies make model-free RL sample
efficient for practical robotics tasks that involve sparse
reward structure without any expert demonstrations?”

We answer this question in affirmative in this paper and
propose to utilize heavy-tailed policies (such as Cauchy) for
policy parametrization along with a modified momentum-
based policy gradient tracking to deal with the sparsity
in reward. These heavy-tailed distributions appear heavily
in fractal geometry [24], [25], finance [26], [27], pattern
formation in nature [28], and networked systems [29], but
has not been well investigated in RL framework. Intuitively,
heavy-tailed policies induce an implicit exploration behavior
into the trained policies (because of the high probability of
taking tail actions), and help to learn effectively in sparse
environments even without any expert demonstrations. We
summarize the main contributions of this paper as follows.

• We propose a novel way to deal with sparse reward
environments to train a policy in continuous state-
action space environments. Our approach is fundamen-
tally different because we introduce heavy-tailed policy
parametrization and avoid using expert demonstrations,
which is a common practice in the existing literature.
This provides a way to work with sparse reward en-
vironments without any reward shaping or demonstra-
tions, which is very difficult otherwise. Additionally, our
formulation is flexibly designed to efficiently incorpo-
rate prior demonstrations as well, if available.

• We observed that just replacing Gaussian policy
parametrization with heavy-tailed (Cauchy)
parametrization results in unstable behavior during
the training. Hence, we propose a modified version
of the momentum-based tracking method proposed in
[30] to control the variance of the stochastic gradient
estimates.

• Finally, we show the efficacy of the proposed algo-
rithm on various continuous control task problems.
The proposed algorithm shows consistent performance
improvement over a variety of benchmark problems (cf.

Sec. IV).

Motivating Example: To emphasize the importance of
learning in a sparse reward continuous control robotic en-
vironment, consider the problem of one-legged Hopper in
MuJoCo environments shown in Fig. 1. It’s easier to define
sparse reward for these continuous tasks, rather than pro-
viding reward feedback after some time for each particular
action.

A. Related Work

Reward Shaping: Reward shaping is the most intuitive way
to deal with sparse rewards. The idea was first appeared in
[13] and further developed in recent works [14], [19], [20],
[31]. The main idea revolves around intrinsic curiosity [19]
and information gain based shaping [20]. Besides being sim-
ple, these methods come with the challenge of designing the
additional reward functions which require expert supervision
and demonstrations which are expensive. Additionally, it also
induces expert-specific bias to the learning systems which
ultimately leads the agent to explore only certain parts of
the environment hindering the overall improvement.

Imitation Learning: Another line of work focuses on
cloning an expert behavior called imitation learning (IL)
[32]. Inverse reinforcement learning (IRL) is one way to
do IL by extracting rewards from the given set of expert’s
trajectories for a given task [16], [17]. This issue of reward
estimation was resolved by generative adversarial imitation
learning (GAIL) algorithm by utilizing a discriminator to
provide reward functions [33]. But the main drawback of
IL-based approaches is that they do not utilize the feedback
from the environment and behave according to the policies
learned from demonstrations. Our approach in this work
is fundamentally different, and we propose a method that
works without demonstrations and can also incorporate prior
demonstrations efficiently in the methodology, is available.

Learning from Demonstration: The idea here is to utilize
expert’s demonstrations to guide the standard learning pro-
cedure in RL algorithms [7], [8], [18], [34], [35]. Authors
in [21], [36] proposed to include expert demonstrations to
replay buffers and utilize them to accelerate the learning.
The authors in [7] proposed an effective way to combine
information from expert’s policy to guide the exploration in
the policy gradient algorithms. Mainly, the original reward
function is modified to also include a term that accounts for
the distance of current policy to the expert’s policy. But as
mentioned previously, the major drawback here is also their
dependence upon the availability of demonstrations, which
are hard to get in practice for continuous control problems.
For instance, expert’s demonstrations in [8] are obtained by
running TRPO with dense rewards and then later used to
train a policy with sparse rewards in the same environment.
This could be difficult to achieve in practice. Therefore, we
propose to modify the policy parametrization in continuous
control environments to induce the required exploration in
the learning procedure.



Heavy-Tailed Policy Parametrization: The idea of
parametrizing policies via heavy-tailed distribution has ap-
peared in the reinforcement learning literature [23], [37].
The authors in [37] proposed to utilize beta distribution for
policy parametrization but are restricted to dense reward
structure environments. Authors in [23] have focused on
the development of heavy-tailed policy gradient to avoid
convergence to local maxima and do not explicitly deal
with sparse rewards. This work focus on sparse reward
continuous control environments and extensive experimental
evaluations to support the importance of heavy-tailed policy
parametrization.

The paper is organized as follows. We start with the prob-
lem formulation in Sec. II, followed by proposed algorithm
in Sec. III. We present experimental results in Sec. IV, and
then conclude the paper in Sec. V.

II. MARKOV DECISION PROBLEMS WITH SPARSE
REWARDS

When we formulate the continuous control robotics prob-
lems via reinforcement learning (RL), an autonomous robot
interacts with the underlying environment by visiting differ-
ent states in the state space S. It starts from a particular
state s ∈ S, selects an action a ∈ A from the action
space, and then transitions to another state s′ ∈ S in
the state space. The next state is assumed to follows an
unknown Markov transition density P(s′|s, a). Then after
reaching state s′, agent received an instantaneous reward
of r(s, a) which quantifies the merit of decision a at state
s. Mathematically, this frameworks is defined as Markov
Decision Process (MDP) given by M := {S, A, P, r, γ},
where γ ∈ (0, 1) is the discount factor which decides the
importance of future rewards for each instant. The state space
S ⊆ Rq and actions space A ⊆ Rp is continuous. Hence, we
hypothesize that the agent selects actions at ∼ π(·|s) over a
time invariant distribution denoted by π(·|s) for a given state
s. The distribution π(·|s) is called a policy which controls
the probability of taking a particular action a in given state
s. The goal in the RL problem is to search for policy π(·|s)
such that the average cumulative reward return (called value)
is maximized given by :

V π(s) = E
[ ∞∑

t=0

γtr(st, at) | s0 = s, at ∼ π(·|st)
]
, (1)

where V π(s) is the value function with respect to
state s, and s0 denotes the initial state along a trajectory
{st, at, r(st, at)}∞u=0. Similar to fixing the initial state s0, if
we fix initial action as well a0 = a, the we can write the
action-value function as

Qπ(s, a) = E
[ ∞∑

t=0

γtr(st, at) | s0 = s, a0 = a, at ∼ π(·|st)
]
.

(2)

We note that the expectation in (1)-(2) is with respect to the
product measure of policy at ∼ π(·|st) and state transition
density st+1 ∼ P(.|st, at). The selection of action at would

control the possibility of visiting different state in the state
space S, and hence also responsible for exploring the state
space. This also becomes important because in this work, we
are specifically interested in environments where the rewards
are sparse (cf. Sec. IV). By sparse rewards we mean that
they are available once in a while (see Fig. 2(a)) or there are
high reward states available (see Fig. 2(b)) but too far in the
state space. Learning a good policy in such environments is
a difficult task and that is the focus of this work. Hence, the
goal here is to find a policy π such that

max
π

V (s0), (3)

with s0 ∼ ρ0(s) and ρ0(s) being an arbitrary initial state
distribution. Since, π here is a policy distribution, it becomes
intractable to solve the problem (3) in it general form and
we keep our focus to a search over parameterized class of
policies denoted by πθ(·|st) where θ is the parameter which
defined the policy distribution completely. So now, our search
over distributions boil down to search over set of parameters
θ [38] given by

max
θ

J(θ) := V πθ (s0), (4)

with s0 ∼ ρ0(s). We note that the problem in (4) is non-
convex with respect to optimization variable θ. Next, we
derive the standard policy gradient algorithm to solve the
problem in (4) and discuss challenges in the sparse reward
settings.

A. Policy Gradient Algorithm

The policy gradient (PG) algorithm is a well known
technique to perform search for optimal parameters θ in
parameter space θ ∈ Rd. The key result which enables us
to write policy gradient for the complicated objective in (4)
is the Policy Gradient Theorem [38], which states that the
gradient of J(θ) with respect to θ can be written as

∇J(θ) =
∫
S×A

∞∑
t=0

γt · P(sk = s
∣∣ s0, πθ)×

×∇πθ(a
∣∣ s) ·Qπθ

(s, a) · dsda (5)

=
1

1− γ

∫
S×A

(1− γ)

∞∑
t=0

γt · P(sk = s
∣∣ s0, πθ)×

×∇πθ(a
∣∣ s) ·Qπθ

(s, a) · dsda

=
1

1− γ

∫
S×A

ρπθ
(s) · πθ(a

∣∣ s)×
×∇ log[πθ(a

∣∣ s)] ·Qπθ
(s, a) · dsda

=
1

1− γ
· E

[
∇ log πθ(a

∣∣ s) ·Qπθ (s, a)
]
, (6)

and the expectation in (6) is over (s, a) ∼ ρθ(·, ·) where
ρθ(s, a)=ρπθ

(s) · πθ(a
∣∣ s) now denotes a valid probability

distribution function also called as discounted state-action
occupancy measure over continuous state and action spaces.
From the expressions of ρθ(s, a) note that the selection
of policy class has a significant affect on the eventually
occupancy measure induced. In tabular MDP settings, to



(a) 1D Mario environment [41]. (b) PMC.

Fig. 2: Sparse reward continuous control environments. (a)
1D Mario environment where the goal is to collect coin
placed at s = 0. A reward of 1 is provided when Mario
reaches s = 0, otherwise no reward for taking any action in
the environment. (b) Pathological Mountain Car where the
goal is to reach top of the hill. This is an instance where
long and short-term incentives are misaligned in continuous
space. There is a low reward state (red) and another high
reward (red) state atop a higher hill. Policies that do not
incentivize exploration get stuck at the spurious goal.

make sure the convergence to global optimal, an assumption
of persistent exploration is needed [22], which is satisfied
by making sure that π(a

∣∣ s) > 0 for all s and a. We
remark that satisfying such assumption automatically takes
care of the fact that we explore almost all parts of the
state space because the probability of reaching any other
state s′ is not zero because of π(a

∣∣ s) > 0. Therefore, in
tabular MDP, things work well even in the sparse reward
settings. In contrast, in continuous action spaces, imposing
such assumption π(a

∣∣ s) > 0 on the policy distribution
π(a

∣∣ s) > 0 would violate the integrable assumption of
probability distributions, and hence is not a valid assumption.
So the induced exploration in the state space is mostly
controlled by the policy distribution class we choose for
parametrization. The standard parametrization class which is
widely used in the literature is Gaussian [7], [8], [39], [40],
and given as follows.

Example 1 (Gaussian Parametrization): We assume
that the policy πθ(a

∣∣ s) is a Gaussian distribution given by

πθ(a|s) = N (a|φ(s)⊤θ, σ2), (7)

where θ controls the mean of the Gaussian, φ(s) denotes the
states feature representation φ : S → Rd with d ≪ q, and
σ2 is fixed variance. We can make σ as a parameter as well
we avoid that for the sake of explanation simplicity.
Now, specifically for sparse reward settings, one major draw-
back of Gaussian parametrization for policy is its tendency
to take actions close to mean value. This feature would
restrict the model transition to a state s′ which is farther from
current state s due to action selection a ∼ N (φ(s)⊤θ, σ2)
close to mean value. This induces a limited exploration
for the algorithm, and it fails to learn in sparse reward
environments. To deal with this issue, different techniques
such as information maximization [20] and learning from
demonstrations [7] are proposed. But the main disadvantages
of such techniques are that entropy regularization required

the estimation of the density function of occupancy which
is quite expensive, and prior demonstrations could be quite
bad and lead to completely irrelevant policies. Hence, to deal
with such issues, instead of proposing any augmentation to
existing techniques to handle sparse rewards, we resort to
a completely novel approach and proposed to utilize heavy-
tailed distributions to parameterize the policy πθ. We explain
this idea in detail in the next section.

III. PROPOSED HEAVY-TAILED STOCHASTIC POLICY
GRADIENT FOR SPARSE REWARDS

In this section, we present the main idea of this work
and develop a stable heavy-tailed stochastic policy gradient
descent algorithm to deal with sparse reward settings.

A. Heavy-Tailed Policy Parametrization

As a first step towards developing such an algorithm, we
propose to parameterize the policy by a class of heavy-tailed
distributions. An example of heavy such parametrization is
Cauchy distribution which is given by

πθ(a|s) =
1

σπ(1 + ((a− φ(s)⊤θ)/σ)2)
, (8)

where σ is the fixed scaling parameter. Other heavy-tailed
distributions include the Extreme value distribution, Weibull
distribution, log-normal distribution, Student’s t distribution,
Generalized Gaussian distribution, etc. The Laplace distribu-
tion has also fatter tails than the Gaussian distribution. In the
financial literature, such distributions have been associated
with the phenomenon of ”black swan” events [26], [27].

With the policy parametrization specified, next goal is
to compute the policy gradient mentioned in (6). But the
challenge is the transition model dynamics are assumed to
me unknown so it is not possible to evaluate ∇J(θ) in
closed form. So we take stochastic approximation approach
and evaluate the stochastic gradient estimate. To write that,
consider a randomized horizon Tk ∼ Geom(1 − γ1/2) with
trajectory sample {(s0, a0) · · · (sTk

, aTk
)} =: ξk(θk), then

stochastic gradient can be written as

∇J(θk,ξk(θk)) (9)

=

Tk∑
t=0

γt/2r(st, at) ·
( t∑

τ=0

∇ log πθk
(aτ

∣∣ sτ )),
where ∇J(θk, ξk(θk)) denotes the unbiased estimator of
gradient ∇J(θk) at θk (see [23, Lemma 1] for proofs) and
and ξk(θk) denotes the randomness in the estimate at k. Note
the variable horizon length of the trajectories in (9) which
is important to obtain an unbiased estimator. Otherwise, a
fixed horizon length estimators where Tk = H for all k (as
in [40], [42]), results in a bias-variance tradeoff for gradient
estimate [43]. Further, note the summation over two indexes
in (9) t corresponds to the rollout trajectory, and τ collects
score function till t from the starting. With the stochastic
gradient defined in (9), the heavy tailed stochastic policy
gradient iterate is given by

θk+1 =θk + η∇J(θk, ξk(θk)), (10)



where η > 0 denotes the step size. Note that the score
function to evaluate the stochastic policy gradient in (10)
is parameterized by a heavy-tailed policy due to the sparse
rewards settings considered in this work. While this selection
of heavy tailed parametrization serves the purpose of select-
ing actions far from mean and induce sufficient exploration
into the algorithm behavior, this exhibits a downside as well.
The resulting algorithm tends to be unstable to to heavy tails
and probability of taking extreme actions. We mitigate this
issue by introducing a momentum based gradient tracking to
the proposed algorithm which is the focus of next subsection.

B. Stable Heavy-Tailed Stochastic Policy Gradient Algo-
rithm

The direct replacement of Gaussian policy parametriza-
tion with heavy-tailed policy parametrization results in an
unstable behavior for the algorithm because the stochastic
gradient estimates exhibit high variations from one sample
to other. To deal with this issue, we need to invoke the idea of
introducing momentum to stochastic gradient (SG) updates
which has been successfully used in other machine learning
approaches [44]. Hence, we replace the update in (10) as
follows

gk =(1− β)gk−1 + β∇J(θk, ξk(θk)), (11)
θk+1 =θk + ηgk, (12)

where β is the tuning parameter and update in (11) is called
the momentum update. Note that for a small β (say β = 0.2)
would results in utilizing the exponential average of past
gradients rather than just considering the current stochastic
gradient ∇J(θk, ξk(θk)). This update is popular in the SG
descent literature and achieves significant improvement em-
pirically as compared to special case of β = 1 [13 from [30]]
but does not result in theoretical gain. To address this issue,
the authors in [30] have proposed a modified momentum
based gradient tracking which result in provable variance
reduction. With motivation from results in [30], we propose a
novel gradient tracking scheme presented next for stochastic
policy gradients with heavy-tailed policy parametrization as

gk =(1− β)gk−1 + β∇J(θk, ξk(θk)) (13)
+ (1− β)(∇J(θk, ξk(θk))−∇J(θk−1, ξk(θk−1))),

θk+1 =θk + ηgk, (14)

where ∇J(θk−1, ξk(θk−1)) denotes the another stochastic
gradient evaluated at instant k with policy parameter θk−1.
The explicit expression is given by

∇J(θk−1,ξk(θk−1)) (15)

=

Tk∑
t=0

γt/2r(s′t, a
′
t) ·

( t∑
τ=0

∇ log πθk−1
(a′τ

∣∣ s′τ )),
where ξk(θk−1) := {s′i, a′i, r(s′i, a′i)}

Tk
i=0 denotes the trajec-

tory generated bu using policy parameter θk−1 but at instance
k. Note that there will be two Monte Carlo trajectories re-
quired to perform the update in (13). We remark an important

Algorithm 1 Heavy-Tailed Stochastic Policy Gradient (HT-
SPG)

1: Initialize : Initial parameter θ0, momentum parameter
β, discount factor γ, step-size η, and gradient estimate
g0=0
Repeat for k = 1, . . .

2: Sample two trajectories ξk(θk) and ξk(θk−1) of length
Tk ∼ Geom(1 − γ1/2) using policies πθk

and πθk−1
,

respectively
3: Estimate ∇J(θk, ξk(θk)), ∇J(θk−1, ξk(θk−1)) via (9)

and (15), respectively
4: Estimate gk via (13)
5: Update θk+1 = θk + ηgk
6: k ← k + 1

Until Convergence
7: Return: θk

difference of update in (13) to the gradient tracking proposed
in [30]. The momentum step in [30, Eq. (2)] would require
the use of ∇J(θk−1, ξk(θk)) (to keep the stochastic quantity
same) instead of ∇J(θk−1, ξk(θk−1)) which we propose to
use in this work. The use of term∇J(θk−1, ξk(θk)) has been
proposed in the literature for reinforcement learning settings
in [40] along with importance sampling weight adjustments
to take care of the distributional shift which occurs due to
the dependence of stochastic trajectory ξk(θk) on θk. Next,
we intuitively explain why it makes sense to use the update
in (13) and it helps to reduce the variance of stochastic
gradients, and hence results in a stable algorithm.

To understand it, let us consider the stochastic error
introduced to the original gradient due to (13) as ϵk =
gk − ∇J(θk). We note that ϵk defines the stochastic error
in the gradient direction to perform the ascent update, and if
we show that E∥ϵk∥2 has a decreasing behavior with respect
to k, this implies that the proposed momentum based update
has resulted in variance reduction. Let us look at the explicit
expression of ϵk as

ϵk =(1− β)ϵk−1 + β(∇J(θk, ξk(θk))−∇J(θk))
+ (1− β)(∇J(θk, ξk(θk))−∇J(θk−1, ξk(θk−1)))

+ (1− β)(∇J(θk)−∇J(θk−1)).
(16)

Next, note that it is the second, third, and fourth term on
the right hand side of (16) which we need to control. We can
easily control the second term on the right hand side of (16)
by keeping β small. From the smoothness of J , we know
that ∥∇J(θk) − ∇J(θk−1)∥ ≈ O (η∥θk − θk−1∥) which
can be controlled by step size η. The only remaining term is
∥∇J(θk, ξk(θk))−∇J(θk−1, ξk(θk−1))∥ which can also be
assumed ≈ O (η∥θk − θk−1∥) when θk and θk−1 are close
to each other. This is possible because of the dependence
of trajectories ξk(·) on θ which is not the case in [30].
Therefore, by controlling β and η, it is possible to develop
a stable algorithm with heavy-tailed policy parametriza-
tions. We summarize the algorithm steps in Algorithm 1.
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Fig. 3: In this figure, we show the importance of selecting
Cauchy as our heavy-tailed policy as compared to other
possible policy parametrization. We run tests on 1D Mario
continuous control environment and plot the average reward
return for different policy parametrizations. It is clear that
Cauchy performs the best among all of them and achieves
the highest reward return. We specifically demonstrate the
superiority of Cauchy’s performance over other heavy-tailed
distribution both in terms of rewards and improved speed of
convergence

Further, we extensively test the empirical performance of
the purposed algorithm on different sparse environments in
next section and show the performance benefits achieved in
practice. We defer the theoretical analysis of the proposed
algorithm to future scope of this work.

IV. EXPERIMENTS

In this section, we proceed to perform extensive experi-
mental validation of the proposed ideas in this work.

First, we perform a detailed analysis and performance
comparison of proposed stable Heavy-Tailed Stochastic Pol-
icy Gradient Algorithm (HT-SPG) in classic continuous
control reinforcement learning environments with sparse
and complex rewards such as 1D Mario [41], Pathological
Mountain Car (cf. Fig. 2(b)), and Sparse Pendulum [11].
Second, to test the performance on complicated continuous
environments, we consider the Sparse MuJoCo environments
namely Hopper-v2 as done in [8]. Finally, we compare the
performance of HT-SPG against state-of-the-art LOGO al-
gorithm [8] and show consistent performance improvements
under complex and challenging settings.

Importance of Policy Parametrization: Before dis-
cussing the main experimental results, we start by demon-
strating (see Fig. 3) the limitations of light-tail pol-
icy parametrization and emphasize the importance of us-
ing heavy-tail distributions such as Cauchy for policy
parametrization. Fig. Fig. ?? shows the average cumula-
tive reward return for different policy parametrizations in
a 1D Mario environment. We demonstrate that Cauchy
distribution-based policy is able to achieve the highest reward
return in the most sample-efficient manner. This is mainly
due to the better exploratory behavior achieved by the

Cauchy-based policy as compared to other policies. Hence,
we will be using Cauchy policy parametrizations for the
rest of the experiments. We detail the different environment
settings as follows.

A. Learning Without Demonstrations

In this subsection, we run experiments in sparse reward
environments and compare against other state of the art
algorithms which operate without any access to expert’s
demonstrations. The details of environments are as follows.

• 1D Mario Environment: This is a one-dimensional,
discrete-time, continuous state and action space envi-
ronment (cf. Fig.2(b)). The state space is s ∈ [0, 1] and
action space is a ∈ [−0.1, 0.1]. The goal is to collect
the coin place at s = 0 and agent can move in right
or left by any amount between [−0.1, 0.1]. The reward
is defined as r(st, at) = 1{st+at<0} and transition
model as st+1 = min{1,max {0, st + at}}. We note
that reward is sparse because it is 1 only at the goal,
otherwise it’s zero in the full state space. Each of the
episodes are initialized at s0 = 0.9.

• Pathological Mountain Car: This is a continuous state
action space environment with misaligned goal (see Fig.
2(b)). The reward is distributed widely over the state
space with a low reward state and a bonanza top a
higher hill. The low reward state is at s = 2.667 with
a reward of 10 and a high reward state farther apart
at s = −4.0 with 500 units of reward. For PMC,
we consider a reward structure in which the amount
of energy expenditure, i.e., the action squared, at each
time-step is negatively penalized, as given by

r(s, a) = −a2t1{−4.0<s<3.709,s̸=2.667}

+ (500− a2t )1{s=−4.0}

+ (10− a2t )1{s=2.67}. (17)

Here , the action is denoted as a and is a one-
dimensional scalar which represents the speed of the
vehicle ṡt.

• Sparse Inverted Pendulum: This is an unstable in-
verted pendulum (pole) attached to a cart (see Fig. 1),
and the goal is to keep the pole upright [11]. An agent
can move the cart to the left or right via applying a
discrete force of ±1 along the horizontal axis of the
cart. It is exactly like Open AI gym’s Pendulum-v0, but
with sparse rewards.

We run the proposed algorithm HT-SPG in the above-
mentioned environments and compare with other state-
of-the-art existing algorithms with light-tailed policy
parametrization (Gaussian) such as RPG [39], and STORM-
PG [40]. There is a state-of-the-art algorithm to solve con-
tinuous control problems without any demonstrations. We
present the results in Fig. 4, where RPG (Cauchy) denotes
RPG algorithm with Cauchy policy parametrization. It is
included to show that just replacing Gaussian (RPG (Gaus-
sian)) with Cauchy is not sufficient to achieve the desired per-
formance, and it results in unstable behavior which exhibits
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(a) 1D Mario Environment [41].
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(b) Pathological Mountain Car.
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(c) Sparse Pendulum.

Fig. 4: In this figure, we compare the performance of the proposed HT-SPG algorithm with RPG [39] and STORM-PG
[40] which are state-of-the-art algorithms to solve the same problems without expert’s demonstrations. Here, RPG (Cauchy)
denotes the RPG algorithm with Cauchy policy parametrization and we compared to it to show that just replacing Gaussian
with Cauchy is not the best thing to do. It works but results in high variance in the reward returns as shown by the high
confidence intervals of yellow line. We plot the average cumulative reward return with respect to number of iterations/episodes
for (a) 1D Mario environment [41], (b) Pathological Mountain Car (cf. 2(b)), and (c) Sparse Pendulum of OpenAI Gym
environments. We note that the HT-SPG is able to achieve highest reward return consistently in all the environments.

high variance in the reward returns. This issue is corrected
by using the momentum-based tracking in HT-SPG. In all
these classic continuous control environments with sparse
rewards, our proposed HT-SPG algorithm outperforms all the
other methods based on light-tail distribution, emphasizing
the significance of heavy-tailed parameterization in learning
under complex and sparse scenarios. We also remark that
HT-SPG is extremely easy to implement and train and can
be integrated with any learning task endowed with complex
and sparse rewards distribution for enhanced performance.

B. MuJuCo Sparse Environments

In this section, we consider the complex sparse MuJoCo
environments of Hopper (see Fig. 1) and test the performance
of the proposed HT-SPG algorithm. We compare it with the
state-of-the-art LOGO algorithm [8]. The state and actions
spaces for these environments are no longer scalar anymore
and require us to deal with multi-variate distributions for
the policy parametrizations. State-space is 12-dimensional,
action space is 3-dimensional linear reward for forward
progress and a quadratic penalty on a joint effort to produce
the reward with a bonus of +1 for being in a non-terminal
state. We end the episodes when the hopper fell over, which
was defined by thresholds on the torso height and angle.
The sparsity in reward structure is obtained by reducing the
events at which reward feedback is provided. Specifically,
we provide a reward of +1 only after the agent moves
forward over 2, 20 units from its initial position, respectively.
We present the performance of HT-SPG as compared to the
LOGO algorithm in Fig. 5. Since the performance of LOGO
was optimized to operate with demonstrations, we considered
the same learning environment with demonstrations for the
proposed HT-SPG algorithm as well. We note that the pro-
posed algorithm is able to outperform LOGO by a significant
margin and exhibit better sample efficiency.
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(a) Hopper-v2 of MuJoCo.

Fig. 5: We plot the average cumulative reward return of the
proposed algorithm HT-SPG with the state-of-the-art LOGO
algorithm. We note that heavy-tailed policy parametrization
is able to induce implicit exploration into the algorithm
and HT-SPG starts receiving higher rewards in almost half
iterations as compared to LOGO. HT-SPG also converges to
a high reward policy very quickly.

V. CONCLUSIONS

In this work, we proposed a novel approach to deal
with sparse reward in continuous control robotics task.
Instead of relying on reward shaping or seeking information
from expert’s demonstrations, we utilize heavy-tailed pol-
icy parametrizations along with momentum based gradient
tracking to learn in sparse robotics environments. We prove
the efficacy of the proposed ideas on various robotics tasks
including inverted pendulum of OpenAI Gym and Hopper-v2
of MuCoCo environments.
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