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Abstract—Non-parametric function approximators provide a
principled way to fit nonlinear statistical models while affording
formal performance guarantees. However, their complexity draw-
backs are well-understood: they define a statistical representation
whose complexity scales with the sample size through the fact
that they retain all past samples. In the case of streaming data,
this complexity may grow unbounded. One is faced with the
question of how to suitably trade off representational complexity
with statistical accuracy, which may be addressed with various
approximation methods. In this work, we formalize that greedy-
based approximations, under suitably chosen compression statis-
tics, can admit near-optimal representations. The key driver of
this result is a novel connection between the reproducing kernel
Hilbert Space (RKHS) norm and the log-determinant of the
kernel matrix, which has been shown to be a submodular set
function of a collection of points. This allows us to design a
constructive variant of a greedy subspace projections in [1],
[2] according to a submodular set cover (SSC) problem, which
provably picks at most logarithmically more elements than the
optimal one. We validate our constructive approach by doing
simulation on real ocean data from the Gulf of Mexico [3].

Index terms— Non-parametric function learning, submod-
ularity, online learning, kernel regression

I. INTRODUCTION

We consider an expected risk minimization (ERM) problem,
where the objective is to learn the regressor by minimizing the
loss function, thereby quantifying the merit of the statistical
model. Our focus is on the case where the regressor is not
a vector-valued parameter w ∈ Rp but rather is a function
f belonging to a reproducing kernel Hilbert space (RKHS)
[4]. These non-linear statistical models provide descriptive
richness owing to their universal approximation properties
[5] as compared to linear models. Unfortunately because of
the setting expected value minimization, their representational
complexity (via the Representer Theorem [6]) scales quadrat-
ically with the sample size, which may be unbounded [7].

To minimize such expected risks without any concern for
the complexity of the feasible set, one may employ first-order
methods such as gradient descent or its stochastic variants [8].
However, with the RKHS representation, one must co-design
first-order method with the complexity of the function class. To
do so, one may either do online sparsification in a way that
is either tied to the optimization procedure (supervised [9],
[10] ) or solely based on finding a sparse representation of the
function (unsupervised [11]–[15]). We note that the favorable
performance in theory and practice of tethering the rule for
complexity reduction to the stochastic gradient update is well-
documented in [1], where a greedily constructed [16] subspace
projection is composed with functional variant of SGD. That
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the learned sequence finiteness of the function representation
(model) complexity is established in [1], with follow-up work
providing a non-asymptotic bound in [17].

However, the guarantees for these methods are only for the
sub-optimality of the RKHS element, but not on whether the
function’s parameterization in terms of past points are close to
the optimal set of points of a fixed size. To address this gap,
we identify that the point selection problem associated with
these subspace projections can be cast as a submodular set
cover (SSC) problem [18]. SSC has been extensively studied
in combinatorial optimization, where one seeks to obtain the
smallest subset satisfying a certain utility, given by a monotone
function [19]–[22] that satisfies submodularity [23], which
formalizes the notion of diminishing returns. It is well-known
that constructive greedy subset selection returns a solution of
at most (1 + log γ)k?, where k? is the size of the optimal
solution set and γ subsumes problem parameters – see [18].

Our main contribution is to make a link between the RKHS
norm as a compression statistic and the log-determinant of
the kernel matrix which has shown to be a submodular set
function in [22], [24], and thereby cast the point selection task
as a SSC problem. In doing so, we provide for the first time
formal guarantees for the retained points of RKHS subspace
projections that are executed constructively. Experimentally,
we demonstrate on real data that we indeed retain near-optimal
collections of points. We note that similar lines of reasoning
are applicable to other areas of approximate Bayesian infer-
ence, under the hypothesis that invocations of submodularity
are lurking behind dimensionality reduction methodologies.

II. PROBLEM STATEMENT

We formulate the ERM problem by considering a convex
loss function ` : H × X × Y → R which characterizes the
goodness-of-fit of the estimator f ∈ H evaluated at x averaged
over all possible training samples, and we also consider adding
a Tikhonov regularizer ‖f‖2H for ensuring stability and write
the problem as

f∗= argmin
f∈H

Ex,y

[
`(f
(
x), y

)]
+
λ

2
‖f‖2H. (1)

The problem (1) is intractable in general. However, for the
case when H is equipped with a reproducing kernel κ : X ×
X → R, we can transform the functional optimization in (1)
to the parametric form using the famous Representer Theorem
[7], [25]. In particular, if H is equipped with a unique kernel
function, κ : X × X → R, such that:

(i) 〈f, κ(x, ·))〉H = f(x), (ii) H = span{κ(x, ·)}, (2)

for all x ∈ X , and 〈·, ·〉H denotes the Hilbert inner product for
H. We further assume that the kernel is positive semidefinite,
i.e. κ(x,x′) ≥ 0 for all x,x′ ∈ X . The function spaces



equipped with such structure are called RKHS [26]. For
kernelized and regularized empirical risk minimization, we can
write the function f ∈ H in terms of kernels evaluated only
at training samples using the Representer Theorem [4], [6] as

f(x) =

N∑
n=1

wnκ(xn,x) . (3)

where w = [w1, · · · , wN ]T ∈ RN denotes a set of weights.
The upper summand index N in (3) is henceforth referred to
as the model order. We proceed with writing out the functional
stochastic gradient (FSGD) method [1] to solve (1) iteratively

ft+1 = (1− ηtλ)ft − ηt`′(ft(xt), yt)κ(xt, ·) , (4)

where ηt > 0 is an algorithm step-size. Now with λ >
0, step-size ηt < 1/λ and initialization f0 = 0 ∈
H, we write the function ft at time t using the Rep-
resenter Theorem given in (3) in terms of samples seen
so far as ft(x) =

∑t−1
n=1 wnκ(xn,x) = wT

t κXt
(x),

where Xt = [x1, . . . ,xt−1] ∈ Rp×(t−1) and κXt(·) =
[κ(x1, ·), . . . , κ(xt−1, ·)]T . The Representer Theorem to-
gether with the stochastic functional update (4) then permits
us to rewrite the functional update in terms of a growing data
matrix called a kernel dictionary X and coefficients w:

Xt+1=[Xt,xt], wt+1=[(1− ηtλ)wt,−ηt`′(ft(xt), yt)] (5)

Observe that Xt+1 has one more column than Xt, an instance
of the curse of kernelization. We define the model order as
number of data points Mt in the dictionary at time t (the
number of columns of Xt). FSGD is such that Mt = t − 1,
and hence grows unbounded with iteration index t.
Subspace Projections. To address this unbounded memory
growth, one may project the function sequence onto a lower di-
mensional subspace HD (HD ⊆ H), where HD is represented
by compressed dictionary D = [d1, . . . , dM ] ∈ Rp×M . Thus,
instead of considering D = Xt+1, we consider a different
dictionary D = Dt+1 ∈ Rp×Mt+1 , which is extracted from the
data points observed thus far, at each iteration, with Mt+1 � t.
Considering this, we first write the parametric representation
of the functional update (4) in terms of these parameters as

D̃t+1=[Dt,xt], w̃t+1=[(1−ηtλ)wt,−ηt`′(ft(xt), yt)], (6)

Previously, a destructive variant of kernel orthogonal matching
pursuit algorithm (KOMP) [27] has been employed to select
the sequence of dictionary and coefficient parameters in [1]. In
this work, we depart from this approach by instead developing
a constructive approach, which we rigorously motivate through
its links to combinatorial optimization, specifically, SSC prob-
lems [18]. Thus, next we present the dictionary selection
problem as a SSC problem and the constructive version of
KOMP [27] algorithm to solve the problem (7) in Alg. 1.

A. Submodular Set cover under Functional Settings
We now present the function approximation problem of

finding dictionary D as a submodular set cover problem:

Dopt
t+1 = argmin

D⊂D̃t+1

|D|, s.t. F (D) ≥ Q, (7)

where the motivation and exact form of F (D) and Q (24) will
be discussed in Lemma 2. Thus at every iteration t, we receive

Algorithm 1 Constructive Functional Greedy (CFG)

Require: Dictionary D̃ ∈ Rp×M̃ representing function f̃ ,
model order M̃ coeffs. w̃ ∈ RM̃ , threshold Q
initialize i = 1, D0 = ∅(empty set), model order M = 0.
while F (Di−1) < Q and |Di−1| < |D̃| do
d∗ := argmaxd∈D̃\Di−1 F (Di−1 ∪ {d})
Update dictionary: Di ← Di−1 ∪ {d∗}
Update model complexity and i: M =M + 1, i = i+ 1

end while
Compute weights w defined by final dict. D = Di−1

w = argmin
w∈RM

‖f̃(·)−wTκD(·)‖H

return f,D,w of model order M ≤ M̃ s.t. ‖f − f̃‖H ≤ ε

sample xt and have dictionary D̃t+1 = [Dt, xt] and we
solve the above problem (7) to obtain the smallest dictionary
D ⊂ D̃t+1 which approximates the function with ε error. Next
we present the algorithm of obtaining the dictionary Dt+1 in
Algorithm 1. The Algorithm 1 starts with an empty dictionary,
i.e., D = ∅ and we keep on adding a dictionary element to D
till the function F (D) (see (24)) achieves the threshold Q (see
(24)). And the moment we have the inequality F (D) ≥ Q,
we exit out of the loop which adds elements to the dictionary
D (see the while loop in Algorithm 1). This algorithm is
called as constructive since it starts from an empty dictionary
and keeps on adding element to the dicitonary in comparison
to the KOMP algorithm in [1] which at every step removes
element from the original dictionary till the stopping criterion
is met (see Algorithm 1 in [1]). Then, next we compute the
weights defined by dictionary D. Thus, to summarize the CFG
algorithm, at every iteration index t, it basically does:

(ft+1,Dt+1,wt+1)=CFG(f̃t+1,D̃t+1, w̃t+1, Q). (8)

Next, we present the standard SSC problem.
Preliminaries: Standard SSC Problem - We consider a

function F which can be a performance measure function or
some accuracy measuring function that measures the quality of
a given subset A ⊆ V = {1, . . . , V }. We define the marginal
gain associated with a given element e ∈ V w.r.t some set
A ⊆ V as ρe(A) := F (A ∪ {e}) − F (A). The function F is
considered to be -
(i) Monotone: For all S, T such that S ⊆ T ⊆ V , we have
F (S) ≤ F (T );
(ii) Submodular: For all all S, T such that S ⊆ T , and for
all e ∈ V \ T , we have ρe(S) ≥ ρe(T ).
Now, we present the famous SSC problem [18], where the
objective is to find the smallest subset A ⊂ V that satisfies a
certain utility Q [20]–[22], i.e.,

A∗ = argmin
A⊂V

|A|, s.t. F (A) ≥ Q. (9)

With these preliminaries set, we next present the relation
between RKHS norm as a compression measure and the log-
determinant of the kernel matrix, and move onto to showing
how the problem (7) was formulated.



III. NON-PARAMETRIC LEARNING: SSC FRAMEWORK

With problem (9) presented above, our objective now is
to formulate the problem of finding the smallest dictionary
D representing function f satisfying ‖f − f̃‖H ≤ ε as a
SSC problem. Before going into those details we first present
Lemma 1, which allows us to relate the RKHS-norm difference
to the logarithm of the determinant of the kernel matrix
KD,D as a function of the kernel dictionary D criterion. We
abbreviate this quantity as logdet subsequently, and it will be
our specification of F in the following subsections.

Lemma 1. The Hilbert norm difference of approximating f̃
by a function fD,w represented by dictionary D and weights
w can be upper-bounded as:

min
D

min
w
‖f̃ − fD,w‖2H

≤ M̃ min
D

M̃∑
i=1

v2i κ(xi,xi)− v2i kTi (KD,D + µI)−1ki. (10)

Proof. Let f̃ be the function defined by dictionary points D̃ =
{xi}M̃i=1 and weights {vi}M̃i=1. We want to approximate f̃ by
a function fD,w with a compressed dictionary D = {dj}Mj=1

having M number of dictionary points and weights {wj}Mj=1.
We formulate the RKHS norm minimization problem as:

min
D

min
w
‖f̃−fD,w‖2H = min

D
min
w
‖
M̃∑
i=1

viφ(xi)−
M∑
j=1

wjφ(dj)‖2H,

where φ(·) is the nonlinear mapping that assigns to each x
the kernel function κ(·,x). We introduce dummy variables wij
such that wj =

∑M̃
i=1 w

i
j and write the above problem as

= min
D

min
w
‖
M̃∑
i=1

[
viφ(xi)−

M∑
j=1

wijφ(dj)
]
‖2H. (11)

Taking the summation outside, we upper bound (11) as

(11) ≤ M̃ min
D

min
w

M̃∑
i=1

‖
[
viφ(xi)−

M∑
j=1

wijφ(dj)
]
‖2H

= M̃ min
D

M̃∑
i=1

min
wi

1,...,w
i
M

‖viφ(xi)−
M∑
j=1

wijφ(dj)‖2H. (12)

For ki = [κ(xi,d1), . . . , κ(xi,dM )], we write the inner
minimization term in (12) by considering regularization as
minwi ‖viφ(xi)−

∑M
j=1 w

i
jφ(dj)‖2H + µ‖wi‖2

= min
wi

wiT (KD,D + µI)wiT − 2viw
iT ki + v2i κ(xi,xi). (13)

Solving the inner minimization problem yields wi =
vi(KD,D + µI)−1ki. Now using the value of wi in (13), we
write the optimization problem over dictionary D and get

(12) ≤M̃min
D

M̃∑
i=1

min
wi

1,...,w
i
M

‖viφ(xi)−
M∑
j=1

wijφ(dj)‖2H + µ‖wi‖2

≤ M̃ min
D

M̃∑
i=1

v2i κ(xi,xi)− v2i kTi (KD,D + µI)−1ki. (14)

With this result stated, we may shift to expanding upon the
relationship between the RKHS-norm error and log det.

A. Function approximation as log-determinant formulation

Before moving into the key results of our work, we bring out
the difference between our work and [28]. In [28], the authors
have also solved the dictionary (representing a function)
selection problem by framing it as a cardinality constrained
submodular maximization problem, where given a constraint
l, the goal is to choose at most l elements that attain the largest
possible utility. However, the approach of our work and the
algorithm to solve it is very different from [28], since we frame
it as a SSC problem, where given a utility Q, the goal is to
find the minimum number of elements that can achieve it.

Next, we frame the dictionary selection problem w.r.t
compression budget ε, i.e., ‖f − f̃‖H ≤ ε as a equivalent
logdet problem, and present the exact forms of F (D) and Q
introduced in (7). This result is presented below in Lemma 2.
Next, we go on to show how this formulation leads us to cast
the dictionary learning problem as the functional SSC problem
presented in (7).

Lemma 2. The smallest dictionary representing the ap-
proximated function fD,w automatically satisfies the criteria
‖f̃ − fD,w‖H ≤ ε if the dictionary D satisfies the inequality

F (D) ≥ Q, (15)

where F (D) := log det(KD,D+µI), and Q := log
[∫
Xdx−

ε
C

]
.

Proof. Let us denote f∗ to be the optimal function. We can
write the inequality

min
D

min
w
‖f̃ − fD,w‖2H ≤ min

D
min
w
‖f∗ − fD,w‖2H, (16)

using the fact that f∗ is the optimal function (f∗ =∫
X v(x)φ(x)dx) and f̃ is the function represented by using

a compressed dictionary. From Lemma 1, we have

min
D

min
w
‖f̃ − fD,w‖2H

≤ M̃ min
D

M̃∑
i=1

v2i κ(xi,xi)− v2i kTi (KD,D + µI)−1ki. (17)

Similar to (17), we can upper bound the right hand side of
(16) as (17) but note here that f∗ is the optimal function when
infinite observation space X is considered. Thus, we can write
the upper bound as

min
D

min
w
‖f∗ − fD,w‖2H ≤C

[
min
D⊂X

∫
X
v(x)2κ(x,x)dx

−
∫
X
v(x)2k(x,D)T (KD,D + µI)−1k(x,D)dx

]
. (18)

where constant C is analogous to M̃ (see the inequality in
(12)) in continuous domain. Thus using (16) and (18), we get:

min
D

min
w
‖f̃ − fD,w‖2H ≤ C

[ ∫
X
v(x)2κ(x,x)dx

− min
D⊂X

∫
X
v(x)2k(x,D)T (KD,D + µI)−1k(x,D)dx

]
(19)

Now, lets consider normalized kernels, i.e., κ(z, z) = 1. If
kernel vector k(x,D) maps to a unique k ∈ [0, 1]M , and also



the function k(·,D)M , then for v(x) = 1, we can simplify
the second integral term in (19) as [28],∫

X
v(x)2k(x,D)T (KD,D + µI)−1k(x,D)dx

=

∫
kT (KD,D + µI)−1kdk = det(KD,D + µI). (20)

The first integral term in (19) can now be simplified as∫
X
v(x)2κ(x,x)dx =

∫
X
dx (21)

using the fact that κ(z, z) = 1 and v(x) = 1.
Now using (21) and (20), we can write the right hand side

of (19) as C
[ ∫
X dx−minD⊂X det(KD,D+µI)

]
. Now if we

can have ensure that

C
[ ∫
X
dx− min

D⊂X
det(KD,D + µI)

]
≤ ε, (22)

then we can say that minD minw ‖f̃−fD,w‖2H ≤ ε from (19).
Re-ordering (22), we can write

∫
X dx − ε/C ≤

minD⊂X det(KD,D + µI) and thereby we can also write:∫
X
dx− ε/C ≤ min

D⊂X
det(KD,D + µI) ≤ det(KD,D + µI). (23)

Taking log on both the sides of (23), we denote the resulting
log terms on the left and right hand side of the inequality as

F (D) := log det(KD,D+µI), and Q := log

[∫
X
dx− ε

C

]
. (24)

Thus, using this definition (24), we get the inequality F (D) ≥
Q, thereby completing the proof.

The logdet function is monotone and submodular [22], [24].
Thus, the inequality F (D) ≥ Q leads us to formulating the
functional submodular cover problem (7) and designing the
greedy Algorithm 1 which ensures that we obtain a dictionary
D satisfying the ε norm ball criterion, i.e., ‖f − f̃‖H ≤ ε.

Next, we present the main result of the work, where we have
generalized the algorithm in [18] for online non-parametric
function learning settings. Theorem 1 encapsulates the result
that using the Alg. 1 will yield a solution that picks at most
logarithmically more elements than the optimal one.

Theorem 1. Considering the submodular and monotone func-
tion F , for every iteration t, the dictionary obtained by Alg. 1
will guarantee that we satisfy the approximation budget ε, and
also characterizes the cardinality of the dictionary obtained
from Alg. 1 in comparison to the cardinality of dictionary
obtained from the optimal algorithm as:

Mt+1 ≤ (1 + logmin{C1, C2}) M opt
t+1 (25)

where Mt+1 = |Dt+1| and M opt
t+1 = |Dopt

t+1|, and C1, C2 are
problem parameters.

Thm. 1 suggests that the logarithmic approximations will
yield a model complexity which will not be very far from the
optimal one. This is the first of its kind result in the non-
parametric function learning literature. The important fact to
note here is that, we can’t establish such bounds (25) using
destructive variants of KOMP algorithm proposed in [1], [2],
and thus the destructive approach lacks the optimal model
complexity guarantees as given in (25). For space restrictions,
we have deferred the proof of Thm. 1 to [29].
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Fig. 1: In Fig. 1(a) we show the convergence of the loss function and in Fig.
1(b) we show the model order growth for temperature and salinity data.

IV. NUMERICAL EXPERIMENTS

In this section, we present the numerical performance of
the constructive algorithm in comparison to the destructive
algorithm on a real world ocean data obtained from the Gulf of
Mexico [3] for estimating temperature and salinity at varying
depths. In practice to implement Alg. 1 is difficult, since the
value of Q is unknown because we can’t find out the value
of the integral term and the constant C inside the log term
in Q in (24). However, we can still establish the efficacy of
the constructive approach, by using the constructive version
(denoted as “CKOMP”) of the destructive variant (denoted
as “DKOMP”) of the KOMP [27] algorithm proposed in [1]
and compare them. For the above comparison, we use the
functional learning framework of [1]. The objective of this
comparison is to show that the constructive algorithm also
chooses the most favourable set of points and approximates
the function closely as the destructive variant does.

We solve problem (1) by minimizing the regularized
quadratic loss over function f using both CKOMP and
DKOMP. Thus we predict the statistical mean of the tem-
perature and salinity fields at varying depths and compare
it with the real data. We consider a Gaussian kernel set at
bandwidth 50 and the regularizer λ = 10−5. The step-size
η and the parsimony constant P (measures the compression
budget: ε = Pη3/2) for both the algorithms are set such
that both have same model complexity. The parameters for
using CKOMP algorithm for estimating temperature (denoted
as “Temp-CKOMP”) are η = 0.05, P = 0.15, and for
estimating salinity (denoted as “Sal-CKOMP”) are η = 0.15,
P = 0.03. Similarly, the parameters for using DKOMP
algorithm for estimating temperature (denoted as “Temp-
DKOMP”) are η = 0.13, P = 3.5, and for estimating salinity
(denoted as “Sal-DKOMP”) are η = 0.135, P = 3.5. Thus,
it can be observed from Fig.1(a) that for comparable model
order growth (see Fig.1(b)), we have approximately same
convergence of objective function, thereby validating the effec-
tiveness of the constructive approach of the algorithm. Hence,
the performance of the constructive approach is comparable
to the destructive algorithm. Thus, the constructive approach
allows us to obtain the bound on model complexity relating it
with the optimal model complexity (Theorem 1) and also gives
favourable performance (see Fig.1) for both the temperature
and salinity fields when compared with destructive algorithm.
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