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Abstract—We consider policy gradient methods for ratio
optimization problems by way of an illustrative case study:
maximizing the Omega ratio of a financial portfolio. We propose a
general framework for ratio optimization in sequential decision-
making problems, explore the notion of hidden quasiconcavity
in such problems, and propose an actor-critic algorithm for the
Omega ratio problem. Our central contribution is to show that
the algorithm converges almost surely to (a neighborhood of) a
global optimum and to demonstrate its performance in practice.

Index Terms—reinforcement learning, portfolio optimization,
quasiconcave programming

I. INTRODUCTION

Ratio optimization problems arise in a variety of sequen-
tial decision-making settings: optimizing risk-return trade-
offs in financial portfolio management, minimizing price-
performance ratios in engineering and economics, and maxi-
mizing network bandwidth in computer network design. Re-
inforcement learning (RL) has seen immense growth in recent
years, with applications to a wide array of decision-making
problems, yet RL for ratio optimization problems remains
largely unexplored. While naı̈ve policy gradient methods can
be applied to ratio optimization problems when the corre-
sponding gradient expressions are tractable, this shallow view
neglects a rich underlying structure: many of these problems
enjoy a certain hidden quasiconcavity property that links
them to the powerful linear programming theory for Markov
decision processes and enables us to prove convergence of
corresponding policy gradient algorithms to global optima.

In this work, we illuminate this rich structure through a
specific example: maximizing the Omega ratio of a financial
portfolio. First, we propose a general framework for sequential
ratio optimization problems, the Markov ratio optimization
process (MROP). Next, we formulate the problem of maxi-
mizing the Omega ratio of a financial portfolio as an MROP
and develop an actor-critic algorithm for solving this problem.
Our main theoretical contribution is to employ hidden qua-
siconcavity of the Omega ratio MROP to establish a global
convergence guarantee for our algorithm. We then illustrate
this methodology on a portfolio optimization problem.

*All proofs of the assertions in this paper are omitted due to space
limitations, but are available upon request and will appear in a forthcoming,
expanded version of this paper. The research of W. Suttle was sponsored
by the Army Research Laboratory and was accomplished under Cooperative
Agreement Number W911NF-22-2-0003.

A. Related Work

RL is a branch of machine learning devoted to solving
sequential decision-making problems; see [1] for an overview.
Particularly important for the present work are the policy
gradient and actor-critic methods [2], [3], which optimize
a performance criterion over a parameterized policy class.
Asymptotic convergence of actor-critic methods was estab-
lished early on in [3], [4], yet their non-asymptotic conver-
gence has been studied only recently [5], [6]. Global optimality
has been established for objectives defined as concave forms
of the long-term occupancy measure of a policy [7]–[9]; these
works leverage a notion called hidden concavity to guarantee
convergence to global optima. We generalize this notion of
hidden concavity to hidden quasiconcavity and combine it with
a two-timescale analysis to provide an analogous result for our
ratio optimization algorithm.

The RL literature concerning ratio optimization problems
is sparse. Unlike the standard RL setting, where the objective
function belongs to an underlying Markov decision process
(MDP), there is no single, underlying MDP for such problems.
Since many RL techniques are based on the rich, well-
understood structure of MDPs, these connections get severed
when we move to the ratio setting. The state- and action-
value functions that are critical to Q-learning and actor-critic
methods have no clear analogues, and the ratio structure can
interfere with the Lipschitz properties that are essential to
convergence analyses of policy gradient methods. Nonetheless,
examples of RL techniques for solving ratio optimization prob-
lems based on connections to generalizations of MDPs exist
in the literature. MDPs with fractional costs, also known as
cost-aware MDPs (CAMDPs), and associated RL algorithms
were first considered in [10]. More recently, [11] proposed
two new RL algorithms with convergence guarantees for
solving CAMDPs. The MROP framework that we propose
in this paper contains CAMDPs as a special case, and our
convergence results can be applied to the actor-critic algorithm
considered in [11].

We develop these approaches in the context of portfolio
optimization, which studies optimal rebalancing strategies for
managing financial portfolios [12], [13]. Many of the most
widely-used objective functions in portfolio optimization are
ratios, including the Sharpe, Calmar, Sortino, and Omega
ratios [14]–[17]. Unlike other performance ratios, which typi-
cally only consider lower-order moments of the returns distri-



bution, the Omega ratio incorporates all moments and may be
a more appropriate objective for complex problems. Though
RL-based approaches to portfolio optimization are not new
[18]–[21], to our knowledge, RL techniques for maximizing
the Omega ratio remain unexplored.

II. PROBLEM FORMULATION

In this section we propose a general framework for modeling
sequential decision making problems where the objective
is to optimize a ratio of two performance measures. This
framework, the Markov ratio optimization process (MROP),
is a generalization of the familiar MDP. We then formulate
the Omega ratio portfolio optimization problem as an MROP,
laying the groundwork for the Omega ratio actor-critic algo-
rithm of the following section.

A. Markov Decision Processes

Consider an average-reward MDP (S,A, p, r), where S is
the state space, A is the action space, p : S × A → D(S) is
the transition probability kernel mapping state-action pairs to
distributions over the state space, and r : S × A → R is the
reward function. At each timestep t, the agent is in state st,
chooses an action at according to some policy π : S → D(A)
mapping states to distributions over the action set, and incurs
a corresponding reward r(st, at). The system then transitions
into a new state st+1 ∼ p(·|st, at). Note that, if we ignore the
reward function r, we are left with a controlled Markov chain
(S,A, p). This is important in the definition of an MROP in
the following section.

Given a policy π, let dπ ∈ D(S) denote the steady-state
occupancy measure over S induced by π. In addition, let
λπ ∈ D(S × A) denote the state-action occupancy measure
induced by π over S ×A. Note that λπ(s, a) = dπ(s)π(a|s).
Finally, let J(π) = limn→∞

1
nEπ [

∑n
i=1 r(si, ai)] =∫

S
∫
A r(s, a)π(a|s)dπ(s) da ds denote the long-run average

reward of using policy π.

B. Markov Ratio Optimization Processes

Fix a controlled Markov chain (S,A, p). Given two func-
tions f, g : D(S × A) → R, consider the problem of finding
a policy π maximizing the objective function

f(λπ)

g(λπ)
(1)

over the controlled Markov chain (S,A, p). This leads us to
the following generalization of the classic MDP:

Definition 1. A Markov ratio optimization process (MROP),
given by (S,A, p, f, g), is a discrete-time stochastic decision-
making process where the goal is to find a policy π maximiz-
ing the ratio f(λπ)/g(λπ) over the controlled Markov chain
(S,A, p).

This MROP definition subsumes the average-reward MDP
(see, e.g., [22]) and the cost-aware MDP defined in [11] as
special cases. We now turn our attention to a particular case.

C. Omega Ratio

A pervasive trend in the financial literature is to formulate
measures of total performance for sequential decision-making
problems as ratios of some combination of risk and reward
functions. Let τ ∈ R be a given real number. One useful such
example is the Sharpe ratio, defined by

Sh(R; τ) =
E[R− τ ]√
Var(R− τ)

, (2)

which is a classical case of a measure of risk-adjusted returns.
Here, τ is a target return, and the ratio rewards returns that
exceed the target while punishing high-volatility returns. A
potential weakness of the Sharpe ratio is its emphasis on the
first and second moments of the portfolio returns distribution,
which works best when the distribution is roughly normal but
suffers against skewed or multi-modal distributions.

Letting the cumulative distribution function for the portfolio
return R be denoted FR, the Omega ratio [17] is given by

Ω(R; τ) =

∫∞
τ

[1− FR(r)] dr∫ τ
−∞ FR(r) dr

. (3)

The Omega ratio can be interpreted as the ratio of the expected
excess (above threshold τ ) returns to the expected shortfall
(below threshold τ ) returns of the portfolio. A distinct advan-
tage of the Omega ratio over financial measures such as the
Sharpe ratio is that the Omega ratio incorporates information
about all moments of R.

D. Omega Ratio Maximization as an MROP

We now formulate optimization of the Omega ratio as an
MROP. We begin with an average-reward MDP (S,A, p, r).
Let ν1, . . . , νk denote k available assets. Assume each asset νi

can take on only positive values inside some set Si ⊂ R+. Let
S = S1×. . .×Sk denote the set of all possible combinations of
values that the assets can take. Let A := {a ∈ Rk |

∑k
i=1 a

i =
1, ai ≥ 0} denote the k-dimensional probability simplex.
We interpret a given element a = (a1, . . . , ak) ∈ A as an
allocation of principal to each of the assets ν1, . . . , νk: the
proportion aj of our total principal is allocated to asset νj , for
each j = 1, . . . , k. Let a transition kernel p : S × A → D(S)
be given that represents the market dynamics.1 The expected
return of choosing allocation a in state s is given by r(s, a) =∫
S

[∑
j a

j(νjs′ − νjs)/νjs

]
p(s′|s, a) ds′, where νjs denotes the

value of asset νj in state s.2 Notice that, at timestep t, we can
estimate r(st, at) using r̂(st, at) =

∑
j a

j(νjst+1
− νjst)/ν

j
st .

Bearing this in mind, we henceforth assume we have an
estimate of r(st, at) at each timestep.

Based on the above average-reward MDP (S,A, p, r), we
formulate the Omega ratio optimization problem as an MROP

1In most cases the transition dynamics, p, will be independent of the action
chosen, since the act of rebalancing the portfolio will have a negligible effect
on the overall market. In certain situations, however, such as when the total
principal of the portfolio is very large, actions taken by the portfolio manager
may influence the market. Since our results go through for the more general
case where p depends on the action chosen, we give our results for this case.

2This reward can be easily modified to take transaction costs into account.



as follows. Given a policy π, the returns distribution R induced
by π, and a threshold τ , we rewrite the Omega ratio defined in
(3) in a more tractable form. We can perform a simple integra-
tion by parts to obtain

∫∞
τ

[1−FR(x)]dx = E [max(0, R− τ)]
and

∫ τ
−∞ FR(x)dx = E [max(0, τ −R)]. This implies that we

can rewrite the Omega ratio (3) as follows:

Ω(π; τ) =
Eπ [max(0, R− τ)]

Eπ [max(0, τ −R)]
(4)

=

∫
S

∫
Amax(0, r(s, a)− τ)λπ(s, a) da ds∫

S

∫
Amax(0, τ − r(s, a))λπ(s, a) da ds

Taking f(λπ) = Eπ [max(0, R− τ)] and g(λπ) =
Eπ [max(0, τ −R)] completes our formulation of the Omega
ratio maximization problem as an MROP, where our goal is
to find a policy π maximizing objective (4).

III. ALGORITHM

A. Omega Ratio Policy Gradient

Consider an MDP (S,A, p, r) and parametrized policy class
{πθ}θ∈Θ. Given policy parameter θ, define the relative state
value function Vθ(s) =

∑∞
t=0 Eπθ [r(s, a)− J(θ) | s0 = s] ,

relative state-action value function Qθ(s, a) =∑∞
t=0 Eπθ [r(s, a)− J(θ) | s0 = s, a0 = a] , and advantage

function Aθ(s, a) = Qθ(s, a) − Vθ(s). Under the assumption
that πθ(a|s) is differentiable in θ, for all s ∈ S, a ∈ A, by
the classic policy gradient theorem [2] we have

∇J(θ) = Eπθ
[
Aθ(s, a)∇ log πθ(a|s)

]
. (5)

We are interested in applying a variation of the policy
gradient method to maximizing the Omega ratio (4). Since this
objective is a ratio of two expectations, however, the policy
gradient theorem (5) does not directly apply. Instead, we apply
standard calculus in conjunction with two distinct applications
of (5) to obtain a tractable gradient expression as follows. For a
fixed risk-free rate of return τ , let r+(s, a) = max(0, r(s, a)−
τ) and r−(s, a) = max(0, τ − r(s, a)), with corresponding
MDPs (S,A, p, r+) and (S,A, p, r−). Next, define J+(θ) =
Eπθ [r+(s, a)] and J−(θ) = Eπθ [r−(s, a)], as well as the
corresponding value and advantage functions V +

θ , Q
+
θ , A

+
θ ,

and V −θ , Q
−
θ , A

−
θ . Clearly, Ω(θ; τ) := Ω(πθ; τ) = J+(θ)

J−(θ) .
Furthermore, by the quotient rule we have

∇θΩ(θ; τ) =
J−(θ)∇J+(θ)− J+(θ)∇J−(θ)

[J−(θ)]2
. (6)

Combined with the classic policy gradient theorem (5), this
gives ∇Ω(θ; τ) =

Eπθ
[
J−(θ)A+

θ (s, a)− J+(θ)A−θ (s, a)

[J−(θ)]2
∇ log πθ(a|s)

]
, (7)

As long as we can estimate J+(θ), J−(θ), A+
θ , and A−θ , we

can therefore also estimate the gradient of the Omega ratio.

B. Actor-Critic Algorithm

Based on the policy gradient expression above, we now
develop a variant of the classic actor-critic algorithm [3],
[23] for maximizing the Omega ratio. In order to estimate
∇Ω(θ; τ), we use two critics, one for each of the state
value functions associated with the MDPs (S,A, p, r+) and

(S,A, p, r−) defined above. We assume for ease of exposition
that we use the same class {vω}ω∈Ω of state value function
approximators for both critics, but this assumption can be
removed both in practice and in the convergence analysis. Let
a parametric policy class {πθ}θ∈Θ and a class {vω}ω∈Ω of
state value function approximators be given. The algorithm is
as follows.

Initialize stepsize sequences {αt}, {βt} and initial policy
parameter θ0. Initialize the V + and V − critic parameters ω+

0

and ω−0 , respectively, as well as constants µ+
−1, µ

−
−1 > 0. At

timestep t, update the estimates µ+
t , µ

−
t of J+(θt), J

−(θt) via

µ+
t = (1− αt)µ+

t−1 + αtr
+(st, at), (8)

µ−t = (1− αt)µ−t−1 + αtr
−(st, at). (9)

Next, update the TD errors3

δ+
t = r+(st, at)− µ+

t + vω+
t

(st+1)− vω+
t

(st), (10)

δ−t = r−(st, at)− µ−t + vω−t
(st+1)− vω−t (st). (11)

Next, perform the critic updates

ω+
t+1 = ω+

t + αtδ
+
t ∇vω+

t
(st), (12)

ω−t+1 = ω−t + αtδ
−
t ∇vω−t (st). (13)

Finally, carry out the actor update

θt+1 = θt − βt
µ−t δ

+
t − µ+

t δ
−
t[

µ−t
]2 ∇ log πθt(at|st). (14)

The iterative algorithm just given is what we will study
in our convergence analysis. In practice, however, it is often
advantageous to perform rollouts of some length K at each
timestep, then use data from the entire rollout to obtain lower-
variance gradient estimates for the critic and actor updates.

IV. THEORETICAL RESULTS

A. Concave Reformulation

Given access to the transition probability function p and
functions f, g of an MROP with finite state and action spaces,
the problem of finding the optimal state-action occupancy
measure can be formulated as the following problem:

max
λ

f(λ)

g(λ)

s.t.
∑
s

∑
a

λsa = 1, (R0)∑
a

λsa =
∑
s′

∑
a

p(s|s′, a)λs′a, ∀s ∈ S,

λ ≥ 0.

See [22] for details on why the constraints ensure λ is a valid
occupancy measure given the transition probability function
p. When f is concave and g is affine and positive over the
feasible region, problem (R0) is a quasiconcave optimization

3It is well-known that the TD errors δ+t , δ
−
t approximate the advantage

functions A+
θt
(st, at), A

−
θt
(st, at), respectively.



problem. A function h : Rn → R is quasiconcave if h(γx +
(1 − γ)y) ≥ min(h(x), h(y)), for all x, y ∈ Rn, γ ∈ [0, 1].
Note that when c > 0 is a vector of positive costs and g(λ) =
cTλ, as in the classic MDP setting, then g is linear (and thus
affine) and positive over the feasible region. In this case, by
[24, Prop. 7.2] we know that (R0) can be transformed via the
variable transformation y = λ

g(λ) , t = 1
g(λ) to the equivalent

concave program

max
y, t

tf
(y
t

)
s.t.

∑
s

∑
a

ysa − t = 0, (R1)∑
a

ysa −
∑
s′

∑
a

p(s|s′, a)ys′a = 0, ∀s ∈ S,∑
s

∑
a

csaysa + bt = 1,

y ≥ 0.

Solving (R1) to obtain the optimal (y∗, t∗), we can imme-
diately recover the optimal state-action occupancy measure
λ∗ = y∗/t∗ for (R0). An optimal policy π∗ for the MROP
(S,A, p, f, g) is then recovered via π∗(a|s) = λ∗sa/

∑
a′ λ
∗
sa′ .

Returning to our MROP formulation of the Omega ratio
optimization problem, in the case where S and A are finite4

we can express the Omega ratio as

Ω(π; τ) =

∑
s

∑
a max(0, r(s, a)− τ)λπ(s, a)∑

s

∑
a max(0, τ − r(s, a))λπ(s, a)

. (15)

The numerator and denominator of this objective are both lin-
ear in the state-action occupancy measure and the denominator
is strictly positive so long as there is always non-negligible
downside risk (i.e., positive expected shortfall), so the concave
transformation described above for the more general MROP
setting applies to our Omega ratio MROP. We use this fact
below to prove that the algorithm described in the previous
section converges to the global optimum of the Omega ratio.

B. Hidden Quasiconcavity

In this section we show that the problem of maximizing
the Omega ratio enjoys a powerful hidden quasiconcavity
property. Importantly, this property implies that policy gradient
algorithms like the actor-critic algorithm described above find
the global optimum of the Omega ratio problem under certain
conditions, even when the policy parametrization results in a
highly non-concave objective.

Consider the Omega ratio MROP (S,A, p, f, g) given
above, where f(λπ) = Eπ [max(0, R− τ)], g(λπ) =
Eπ [max(0, τ −R)], τ is the risk-free rate of return, and S
and A are finite. Assume that there is always non-negligible
downside risk, so g(λπ) is always strictly positive, and recall
that f and g are both linear in λ. Let a convex, compact set

4For practical purposes, the range of possible values the assets can attain
is bounded, i.e., for each asset ei we have ei ∈ Si = [0,M i], for some
upper bound M i. This means that the state space S = S1 × . . . × Sk is
also bounded. Since A is already bounded, we can discretize both S and A
to obtain a finite state- and action-space approximation to the original MDP.

Θ ⊂ Rd, where d < |S||A|, and a parametrized policy class
{πθ}θ∈Θ be given. Let λ : Θ → D(S × A) be a function
mapping each parameter vector θ ∈ Θ to the state-action
occupancy measure λ(θ) := λθ := λπθ induced by the policy
πθ over S ×A. Consider the optimization problem

max
θ ∈ Θ

Ω(θ; τ) =
f(λθ)

g(λθ)
. (16)

Note that the objective in (16) is potentially highly non-
concave as a function of θ. It turns out that, under the following
conditions, every stationary point of this problem nonetheless
corresponds to a global optimum.

Assumption 1. The following statements hold:
1) λ(·) gives a bijection between Θ and its image λ(Θ),

and λ(Θ) is compact and convex.
2) Let h(·) := λ−1(·) denote the inverse mapping of λ(·).

h(·) is Lipschitz continuous.
3) The Jacobian matrix ∇θλ(θ) is Lipschitz on Θ.

We have the following characterization of the hidden qua-
siconcavity property.

Theorem 1. Let Assumption 1 hold, and let θ∗ be a stationary
point of (16), i.e., ∇Ω(θ∗; τ) = 0. Then θ∗ is globally optimal
for (16).

The proof is modeled after that of [7, Thm. 4.2], with key
modifications to accommodate the fact that the underlying
ratio optimization problem is not concave, but quasiconcave
in the state-action occupancy measure. Theorem 1 implies that
any algorithm that finds a stationary point of the Omega ratio
optimization problem (16) in fact finds its global optimum.
This result greatly strengthens the asymptotic convergence
analysis provided in the following section.

C. Convergence

In this section we show almost sure (a.s.) convergence of
the Omega ratio actor-critic algorithm to a neighborhood of a
stationary point of the optimization problem maxθ∈Θ Ω(θ; τ).
As discussed in Section IV-B, this implies that, thanks to
the hidden quasiconcavity of the Omega ratio optimization
problem, the algorithm converges a.s. to a neighborhood of a
global optimum. This result is much stronger than existing
asymptotic results for actor-critic schemes, which typically
only guarantee convergence to a neighborhood of a local
optimum or saddle point.

We analyze the algorithm as given in equations (8)-(14),
with the addition of a projection operation to equation (14):

θt+1 = Γ

(
θt − βt

µ−t δ
+
t − µ+

t δ
−
t[

µ−t
]2 ∇ log πθt(at|st)

)
, (17)

where Γ : Rd → Θ maps any parameter θ ∈ Rd back onto the
compact set Θ ⊂ Rd of permissible policy parameters. This
projection, which is common in the actor-critic and broader
two-timescale stochastic approximation literature (see, e.g.,
[3], [25], [26]) is for purposes of theoretical analysis, and



is typically not needed in practice. We make the following
additional assumptions, which are standard in the literature.

Assumption 2. The stepsize sequences {αn} and {βn} satisfy∑
n αn =

∑
n βn =∞,

∑
n α

2
n+β2

n <∞, and limn
βn
αn

= 0.

Assumption 3. The value function approximators vω
are linear, i.e., vω(s) = ω>φ(s), where φ(s) =
[φ1(s) · · · φK(s)]> ∈ RK is the feature vector associated
with s ∈ S . The feature vectors φ(s) are uniformly bounded
for any s ∈ S, and the feature matrix Φ = [φ(s)]>s∈S ∈ R|S|×K
has full column rank. For any u ∈ RK , Φu 6= 1, where 1 is
the vector of all ones.

Assumption 4. The set of permissible policy parameters Θ ⊂
Rd is a compact set. Furthermore, for any s ∈ S, a ∈ A, the
function πθ(a|s) is continuously differentiable with respect to
θ on Θ, and the Markov chain induced by πθ on S is ergodic.

The following analysis leverages the average-reward actor-
critic results in [3] and borrows heavily from the analy-
sis of cost-aware actor-critic in [11]. For a given policy
parameter θ, let Dθ = diag(dθ) ∈ R|S|×|S| denote the
matrix with the elements of dθ along the diagonal and zeros
everywhere else. Define the state reward vector for the MDP
(S,A, p, r+) to be r+

θ = [r+
θ (s)]>s∈S ∈ R|S|, where r+

θ (s) =∑
a∈A πθ(a|s)r+(s, a). Define the state reward vector r−θ for

the MDP (S,A, p, r−) similarly. Finally, let Pθ ∈ R|S|×|S|
denote the state transition probability matrix under policy πθ,
i.e., Pθ(s′|s) =

∑
a∈A πθ(a|s)p(s′|s, a), for any s, s′ ∈ S. We

first have convergence of the critics. The proofs of this and
the subsequent results are routine; see [3], [11] for details.

Lemma 1. Under Assumption 3, given a fixed policy pa-
rameter θ ∈ Θ, the recursive updates (8)-(13) converge as
follows: limt→∞ µ+

t = J+(θ) a.s., limt→∞ µ−t = J−(θ) a.s.,
limt→∞ ω+

t = ω+
θ a.s., and limt→∞ ω−t = ω−θ a.s., where ω+

θ
and ω−θ are, respectively, the unique solutions to

Φ>Dθ
[
r+θ − J

+(θ) · 1 + Pθ(Φω
+)− Φω+] = 0, (18)

Φ>Dθ
[
r−θ − J

−(θ) · 1 + Pθ(Φω
−)− Φω−

]
= 0. (19)

This result shows that the sequences {ω+
t } and {ω−t } con-

verge a.s. to the limit points ω+
θ and ω−θ of the TD(0) algorithm

with linear function approximation for their respective MDPs.
Due to the use of linear function approximation, when used

in the policy update step the value function estimates v+
θ =

Φω+
θ and v−θ = Φω−θ may result in biased gradient estimates.

Similar to the bias characterization given in [3, Lemma 4],
this bias can be characterized as follows.

Lemma 2. Fix θ ∈ Θ. Let

δθ,+t = r+(st, at)− J+(θ) + φ(st+1)>ω+
θ − φ(st)

>ω+
θ ,

δθ,−t = r−(st, at)− J−(θ) + φ(st+1)>ω−θ − φ(st)
>ω−θ ,

denote the stationary estimates of the TD-errors at time t. Let

v+θ = Eπθ
[
r+(s, a)− J+(θ) + φ(s′)>ω+

θ

]
,

v−θ = Eπθ
[
r−(s, a)− J−(θ) + φ(s′)>ω−θ

]
,

where s′ denotes the state visited after s, and let

ε+θ =
∑
s∈S

dθ(s)
[
∇θv+θ (s)−∇θφ(s)>ω+

θ

]
,

ε−θ =
∑
s∈S

dθ(s)
[
∇θv−θ (s)−∇θφ(s)>ω−θ

]
.

We then have that

Eπθ

[
J−(θ)δθ,+t − J+(θ)δθ,−t

[J−(θ)]2
∇ log πθ(at|st)

]

= ∇Ω(θ; τ) +
J−(θ)ε+θ − J

+(θ)ε−θ
[J−(θ)]2

.

Given any continuous function f : Θ → Rd, define
the function Γ̂(·) using the projection operator Γ to be
Γ̂(f(θ)) = limη→0+ [Γ(θ + η · f(θ))− θ]

/
η. Define εθ =

(J−(θ)ε+θ − J+(θ)ε−θ )/ [J−(θ)]
2
, and consider the ordinary

differential equations (ODEs)

θ̇ = Γ̂(∇Ω(θ; τ)), (20)

θ̇ = Γ̂(∇Ω(θ; τ) + εθ). (21)

Let Z,Y denote the sets of asymptotically stable equilibria
of the ODEs (20), (21), respectively. In addition, given a set
B and constant ε > 0, define the ε-neighborhood of B to be
Bε = {x | infz∈B ‖x− z‖ ≤ ε}. We then have the following
theorem.

Theorem 2. Under Assumptions 2 and 4, given any ε > 0,
there exists δ > 0 such that, for {θt} obtained from the
recursive scheme (8)-(14) , if supt ‖εθt‖ < δ, then θt → Zε
a.s. as t→∞.

Combined with the results of Section IV-B, Theorem 2
establishes almost sure convergence of our Omega ratio actor-
critic algorithm to a neighborhood of a global optimum of
Ω(θ; τ) when linear function approximation is used for the
critic. Note that, as the expressive capacity of our approxi-
mation scheme improves, the biases and resulting error terms
tend to zero.

V. EXPERIMENTAL RESULTS

To illustrate the theory developed above, we trained our
Omega ratio maximization algorithm on a small portfolio op-
timization problem and compared it with a random allocation
strategy. We implemented the Omega ratio actor-critic algo-
rithm as described in Section III. We used tabular softmax poli-
cies, i.e., πθ(ai|s) = exp(θTψ(s, ai))/

∑
j exp(θTψ(s, aj)),

where θ ∈ R|S|·|A| and ψ : S×A → R|S|·|A| maps each state-
action pair to a unique standard basis vector ek ∈ R|S|·|A|,
where ek has a 1 in its kth entry and 0 everywhere else. We
similarly used tabular representation for the value functions:
vω(s) = ωTφ(s). Through trial and error we chose hyperpa-
rameters αt = 2.0, βt = 1.0, τ = 0.1, µ+

0 = µ−0 = 1.0, and
we initialized the actor and critic parameters using zero-mean
Gaussian distributions. Our portfolio environment consisted of
three assets. Each asset was constrained to lie in the interval
[50, 55], which we discretized into five distinct values. We also



Fig. 1: Learning curve for Omega ratio actor-critic with mean
and 95% confidence intervals over five replications. Each
episode is 360 months and τ = 0.

Fig. 2: Portfolio performance over 10 years of learned and
random policies with mean and 95% confidence intervals over
100 replications.

discretized the action space into five possible values along
each dimension. The transition probabilities were chosen so
that the average monthly returns of the three assets were
%2.5,%5, and −%2, with volatilities %3.4,%3.6, and %3.2,
respectively. The agent was permitted to rebalance the portfo-
lio monthly. We trained our Omega ratio algorithm using five
different initializations, pictured in Figure 1, then evaluated
the resulting policies against uniformly random policies in
Figure 2. Figure 1 shows that the algorithm steadily increases
the Omega ratio, while Figure 2 illustrates that the resulting
policies significantly outperform the random baseline policy.

VI. CONCLUSION

In this paper we have investigated policy gradient algo-
rithms for ratio optimization problems via an illustrative case
study, leveraging the hidden quasiconcavity of such problems
to prove convergence to (neighborhoods of) global optima.
Although our algorithm and results are given for the Omega

ratio in this paper, the same steps apply to a much more general
class of MROPs; this is the topic of forthcoming work.
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