

Online and Decentralized Statistical Learning

Alec Koppel University of Pennsylvania, Philadelphia, PA

Phd Committee: Alejandro Ribeiro (Advisor), Vijay Kumar (Chair), Brian M. Sadler, Jonathan Fink

> Phd Proposal Philadelphia, PA, Dec. 1, 2016

Introduction

Introduction

Generalized Linear Models

Networked Regret Minimization
Online Learning in Complex Networks

Dictionary Learning

Robot Path-Planning
Decentralized Dynamic Discriminative Dictionaries

Nonparametric Regression

Conclusion

Appendix

Statistical Inference and Optimization

- ▶ Consider $(\mathbf{x}, \mathbf{y}) \in \mathcal{X} \times \mathcal{Y}$ as random pair \Rightarrow training examples
- ▶ Examples: classification $\mathbf{y} \in \{1, ..., c\}$ or regression $\mathbf{y} \in \mathbb{R}$
 - ⇒ Perform prediction ⇒ optimize statistical inference accuracy

$$\hat{\mathbf{y}}^*(\mathbf{x}) := \mathop{\text{argmin}}_{\hat{\mathbf{y}}(\mathbf{x})} \mathbb{E}_{\mathbf{x},\mathbf{y}}[\mathbb{I}\{\hat{\mathbf{y}}(\mathbf{x}) \neq \mathbf{y})\}]$$

- ▶ In general intractable \Rightarrow distribution $\mathbb{P}(\mathbf{x}, \mathbf{y})$ is unknown
 - \Rightarrow but gives clear merit for choosing estimator $\hat{\mathbf{y}}$
 - $\Rightarrow \hat{\mathbf{y}}^*(\mathbf{x})$ achieves optimal Bayes Risk

Expected Risk Minimization

- Since optimizing statistical error rate directly is intractable
 - \Rightarrow Replace 0-1 loss \Rightarrow convex loss $\ell: \mathcal{W} \to \mathbb{R}, \, \mathcal{W} \subset \mathbb{R}^p$,
 - \Rightarrow Estimator $\hat{\mathbf{y}}(\mathbf{x}) = \hat{\mathbf{y}}(\mathbf{w}, \mathbf{x})$ depends on model parameters \mathbf{w}

$$\mathbf{w}^* := \underset{\mathbf{w}}{\operatorname{argmin}} \mathbb{E}_{\mathbf{x},\mathbf{y}}[\ell(\mathbf{w};\mathbf{x},\mathbf{y})] = \frac{1}{N} \sum_{n=1}^{N} \ell(\mathbf{w};\mathbf{x}_n,\mathbf{y}_n)$$

- ▶ Can solve optimization problem, define $L(\mathbf{w}) = \mathbb{E}_{\mathbf{x},\mathbf{y}}[\ell(\mathbf{w};\mathbf{x},\mathbf{y})]$
 - \Rightarrow but unclear how to choose $\hat{y}(\textbf{w},\textbf{x})$ such that $\hat{y}(\textbf{w}^*,\textbf{x})\approx\hat{\textbf{y}}^*$

Expected Risk Minimization

- ▶ Since optimizing statistical error rate directly is intractable
 - \Rightarrow Replace 0 1 loss \Rightarrow convex loss $\ell : \mathcal{W} \to \mathbb{R}, \, \mathcal{W} \subset \mathbb{R}^p$,
 - \Rightarrow Estimator $\hat{\mathbf{y}}(\mathbf{x}) = \hat{\mathbf{y}}(\mathbf{w}, \mathbf{x})$ depends on model parameters \mathbf{w}

$$\mathbf{w}^* := \underset{\mathbf{w}}{\operatorname{argmin}} \mathbb{E}_{\mathbf{x},\mathbf{y}}[\ell(\mathbf{w};\mathbf{x},\mathbf{y})] = \frac{1}{N} \sum_{n=1}^{N} \ell(\mathbf{w};\mathbf{x}_n,\mathbf{y}_n)$$

- ▶ Can solve optimization problem, define $L(\mathbf{w}) = \mathbb{E}_{\mathbf{x},\mathbf{y}}[\ell(\mathbf{w};\mathbf{x},\mathbf{y})]$
 - \Rightarrow but unclear how to choose $\hat{\mathbf{y}}(\mathbf{w},\mathbf{x})$ such that $\hat{\mathbf{y}}(\mathbf{w}^*,\mathbf{x})\approx\hat{\mathbf{y}}^*$
- We'll present approaches to indirectly optimizing accuracy
 - ⇒ Make use of surrogate losses for tractable model training
 - \Rightarrow Higher complexity $\hat{\mathbf{y}}(\mathbf{w}^*, \mathbf{x}) \Rightarrow$ harder training, closer to $\hat{\mathbf{y}}^*$?
 - \Rightarrow Therefore, progressively increase complexity of $\hat{\mathbf{y}}(\mathbf{w}, \mathbf{x})$
- Focus: streaming data settings, multi-agent systems

Statistical Estimators

Generalized Linear Models

Introduction

Generalized Linear Models

Networked Regret Minimization
Online Learning in Complex Networks

Dictionary Learning

Robot Path-Planning
Decentralized Dynamic Discriminative Dictionaries

Nonparametric Regression

Conclusion

Appendix

Large Scale Learning with GLMs

▶ Recall ERM prob. \Rightarrow loss ℓ , parameter vector $\mathbf{w} \in \mathbb{R}^p$

$$\mathbf{w}^* := \underset{\mathbf{w}}{\operatorname{argmin}} \mathbb{E}_{\mathbf{x},\mathbf{y}}[\ell(\mathbf{w};\mathbf{x},\mathbf{y})] = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{n=1}^{N} [\ell(\mathbf{w};\mathbf{x}_n,\mathbf{y}_n)]$$

⇒ Alternative measure of performance is regret

$$\mathbf{Reg}_N = \sum_{n=1}^N \ell(\mathbf{w}_n; \mathbf{x}_n, \mathbf{y}_n) - \sum_{n=1}^N \ell(\mathbf{w}^*; \mathbf{x}_n, \mathbf{y}_n)$$

- Goal: asymptotic no-regret Reg_N/N → 0
 - ⇒ benefit of this perspective is dropping i.i.d. assumption
 - \Rightarrow **Reg**_N/N \approx time-average sub-optimality

Large Scale Learning with GLMs

- ▶ Recall ERM prob. \Rightarrow loss ℓ , parameter vector $\mathbf{w} \in \mathbb{R}^p$
 - ⇒ Alternative measure of performance is regret

$$\mathbf{Reg}_N = \sum_{n=1}^N \ell(\mathbf{w}_n; \mathbf{x}_n, \mathbf{y}_n) - \sum_{n=1}^N \ell(\mathbf{w}^*; \mathbf{x}_n, \mathbf{y}_n)$$

- Goal: asymptotic no-regret Reg_N/N → 0
 - ⇒ benefit of this perspective is dropping i.i.d. assumption
 - \Rightarrow **Reg**_N/N \approx time-average sub-optimality
- ▶ N large/data arrives online \Rightarrow can't compute full gradient of $L(\mathbf{w})$
 - ⇒ Classically solved with stochastic (online) gradient

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t \nabla_{\mathbf{w}} \ell(\mathbf{w}_t; \mathbf{x}_t, \mathbf{y}_t) , \qquad \ell_t(\mathbf{w}) := \ell(\mathbf{w}; \mathbf{x}_t, \mathbf{y}_t)$$

- ▶ Descend w/ stoch. grad. rather than grad. ⇒ one sample/time
- ▶ One can establish that $w_t \to \mathbf{w}^*$ a.s. and $\mathbf{Reg}_N/N \to 0$

Networked Regret Minimization

Introduction

Generalized Linear Models

Networked Regret Minimization
Online Learning in Complex Networks

Dictionary Learning

Robot Path-Planning
Decentralized Dynamic Discriminative Dictionaries

Nonparametric Regression

Conclusion

Appendix

Data Distributed Across a Network

▶ Network $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

$$\Rightarrow |\mathcal{V}| = V, |\mathcal{E}| = E$$

► Neighborhood of agent *i*

$$\Rightarrow$$
 $n_i = \{j : (j, i) \in \mathcal{E}\}$

- Repeated game at agent i, time t
 - \Rightarrow params. $\tilde{\mathbf{w}}_{i,t} \Rightarrow$ local loss $\ell_{i,t}$

- ⇒ decoupled local learning
- ▶ Instead, each agent i aims to
 - \Rightarrow minimize global loss $\ell_t(\tilde{\mathbf{w}}_t) = \sum_{i=1}^{V} \ell_{i,t}(\tilde{\mathbf{w}}_t)$
 - \Rightarrow only observes local loss $\ell_{i,t} \Rightarrow$ collaborate with other agents

Networked Regret

▶ Local Regret of node *i* of distributed online algorithm

$$\mathbf{Reg}_{T}^{i} = \sum_{t=1}^{T} \sum_{j=1}^{V} \ell_{j,t}(\tilde{\mathbf{w}}_{i,t}) - \sum_{t=1}^{T} \sum_{j=1}^{V} \ell_{j,t}(\mathbf{w}^{*}).$$

- \Rightarrow **w*** = argmin_{**x**} $\sum_{t=1}^{T} \sum_{j=1}^{V} \ell_{j,t}(\mathbf{w})$ is the global batch solution
- ⇒ Quality of node *i*'s prediction at others' losses
- Global Networked Regret

$$\mathsf{Reg}_{T} \ := \ \frac{1}{N} \sum_{i=1}^{V} \mathsf{Reg}_{T}^{i} \ = \ \frac{1}{N} \sum_{t=1}^{T} \sum_{i,j=1}^{V} \ell_{j,t}(\tilde{\mathbf{w}}_{i,t}) - \sum_{t=1}^{T} \sum_{j=1}^{N} \ell_{j,t}(\mathbf{w}^{*}),$$

- ▶ Networked online learning goal: Reg_T^i/T , $\operatorname{Reg}_T/T \to 0$ as $T \uparrow$
 - ⇒ Measures how well agents learn global information

Agent Agreement and Lagrangian Relaxation

- ► Convexity of $\ell_{i,t} \implies$ unique globally optimal offline strategy \mathbf{w}^*
 - ⇒ Node predictions should coincide at optimality.
- ▶ At each t we want to enforce $\mathbf{w}_{i,t} = \mathbf{w}_{i,t}$ for $j \in n_i$, or $\mathbf{C}\mathbf{w}_t = \mathbf{0}$.
 - \Rightarrow **C** is node-edge incidence matrix of \mathcal{G} .
 - \Rightarrow **w**_t is stacked version of **w**_{i,t}.
- Constraint enforcement requires global coordination
 - ⇒ Lagrangian relaxation allows distributed computation
- Online Lagrangian for networked learning problem:

$$\mathcal{L}_t(\mathbf{w}_t, \lambda_t) = \sum_{i=1}^V \ell_{i,t}(\mathbf{w}_{i,t}) + \lambda_t^\intercal \mathbf{C} \mathbf{w}_t$$

- ► Convex/concave function in the primal/dual variables
- $ightharpoonup \mathcal{L}_t(\mathbf{w}_t, \boldsymbol{\lambda}_t)$ is stoch. approx. of Lagrangian of prob. (under i.i.d.): $\min_{\mathbf{w}} \sum_{i=1}^{V} \mathbb{E}_{\mathbf{x}_i, \mathbf{y}_i}[\ell(\mathbf{w}_i; \mathbf{x}_i, \mathbf{y}_i)]$ such that $\mathbf{w}_i = \mathbf{w}_i$

Arrow-Hurwicz Saddle Point Method

- ▶ Arrow-Hurwicz saddle pt. to online Lagrangian $\mathcal{L}_t(\mathbf{w}_t, \lambda_t)$
 - ⇒ Primal Lagrangian subgradient descent
 - ⇒ Dual Lagrangian subgradient ascent

$$\mathbf{w}_{t+1} = \mathcal{P}_{X}[\mathbf{w}_{t} - \epsilon \nabla_{\mathbf{w}} \mathcal{L}_{t}(\mathbf{w}_{t}, \lambda_{t})]$$
$$\lambda_{t+1} = \mathcal{P}_{\Lambda}[\lambda_{t} + \epsilon \nabla_{\lambda} \mathcal{L}_{t}(\mathbf{w}_{t}, \lambda_{t})]$$

- ▶ Initialize $\lambda_1 = \mathbf{0}$ for λ_t to remain in the image of **C**
 - ⇒ Required for bounded dual subgradients and constraint slacks
- Yields a decentralized algorithm:

$$\mathbf{w}_{i,t+1} = \mathcal{P}_{\mathcal{W}} \left[\mathbf{w}_{i,t} - \epsilon \left(\nabla_{\mathbf{w}_i} \ell_{i,t}(\mathbf{w}_{i,t}) + \sum_{j \in n_i} \lambda_{ij,t} - \lambda_{ji,t} \right) \right]$$

▶ Dual step at each edge (i,j) ⇒ increase price of disagreement

$$\boldsymbol{\lambda}_{ij,t+1} = \mathcal{P}_{\Lambda_{ij}} \Big[\boldsymbol{\lambda}_{ij,t} + \epsilon \left(\mathbf{w}_{i,t} - \mathbf{w}_{j,t} \right) \Big]$$

Global Networked Regret Bound

Theorem

The saddle point alg. sequence with initialization $\lambda_1 = \mathbf{0}$ and constant step size $\epsilon = 1/\sqrt{T}$ achieves the Global networked regret bound

$$\label{eq:reg_tau} \mbox{Reg}_{\mbox{${\cal T}$}} \, \leq \, \frac{\sqrt{\mbox{${\cal T}$}}}{2} \big(\|\mbox{${\bf w}$}_1 - \mbox{${\bf w}$}^*\|^2 + E C_{\lambda}^2 + G_{\mbox{${\bf w}$}}^2 + G_{\lambda}^2 \big) \, = \, \frac{{\cal O}(\sqrt{\mbox{${\cal T}$}})}{2}.$$

- ▶ $\operatorname{Reg}_T/T \to 0$ with $T \uparrow$, learning constant depends on . . .
 - \Rightarrow Network size V and diameter D
 - \Rightarrow Initialization, Lipschitz constant K, gradient bounds $G_{\mathbf{w}}$, G_{λ}
- ▶ C_{λ} must satisfy $C_{\lambda} \ge DVK + 1 \Rightarrow$ dual set projection
- Comparable to centralized regret of online gradient descent

Detecting Attackers in Computer Networks

- Identify attackers in LAN
- ► KDDCup 99 data set:
 - \Rightarrow VT \approx 5 \times 10⁵ data pts.
 - $\Rightarrow p = 41$ features

- ▶ $\operatorname{Reg}_{T}^{j}/T \rightarrow 0$
 - ⇒ Spikes ⇒ misclassifications
 - ⇒ Recover quickly after mistakes
 - ⇒ No raw info exchange

Detecting Attackers in Computer Networks

▶ Attacker detection protocol on fixed test set of size $T = 10^4$

- (a) Avg. false alarm rate vs. no. of user connections t
- $ightharpoonup \bar{\alpha}_{i,t}$: False alarm rate
- Friendly users flagged
 - ⇒ within [.33, .30]

- (b) Avg. error rate vs. no. of user connections t
- $ightharpoonup \bar{\beta}_{j,t}$: error rate
- Undetected attacks
 - ⇒ within [.13, .17]

Online Learning in Complex Networks

Introduction

Generalized Linear Models

Networked Regret Minimization
Online Learning in Complex Networks

Dictionary Learning

Robot Path-Planning
Decentralized Dynamic Discriminative Dictionaries

Nonparametric Regression

Conclusion

Appendix

Distributed Learning with Latent Correlation

▶ Before, we solved the problem

$$\min_{\mathbf{w}} \sum_{i=1}^{V} \mathbb{E}_{\mathbf{x}_{i},\mathbf{y}_{i}}[\ell(\mathbf{w}_{i},\mathbf{x}_{i},\mathbf{y}_{i})] \text{ such that } \mathbf{w}_{i} = \mathbf{w}_{j}$$

- ⇒ implicitly assumes nodes seek independent, common params
- If there is latent correlation among variables
 - ⇒ equality constraint will harm estimation accuracy
- ▶ Introduce proximity function $h(\mathbf{w}_i, \mathbf{w}_i)$
 - \Rightarrow couples variables of *i* and *j* according to a prior γ_{ij} on $\rho(\mathbf{w}_i, \mathbf{w}_j)$

$$\min_{\mathbf{w}} \sum_{i=1}^{V} \mathbb{E}_{\mathbf{x}_{i},\mathbf{y}_{i}}[\ell(\mathbf{w}_{i},\mathbf{x}_{i},\mathbf{y}_{i})] \text{ such that } h(\mathbf{w}_{i},\mathbf{w}_{j}) \leq \gamma_{ij}$$

⇒ can solve this problem with comparable saddle pt. techniques

Random Field Estimation

- N = 100 grid sensor network
 ⇒ deployed in 200 sq. m. region
- ► Linear estimation w/ corr. obs.
 - \Rightarrow distance corr. $\rho_{ii} = e^{-\|l_i l_j\|}$
- ▶ Constant step-size $\epsilon = 10^{-2.75}$
 - \Rightarrow Prox. func. $\|\mathbf{w}_i \mathbf{w}_j\|^2 \le \gamma_{ij}$
 - $\Rightarrow \gamma_{ij} \Rightarrow$ sample correlation
- Comparable performance to (recursive) Weiner-Hopf estimator
 - ⇒ via proximity constraints

Random Field Estimation

- N = 100 grid sensor network
 ⇒ deployed in 200 sq. m. region
- ► Linear estimation w/ corr. obs.
 - \Rightarrow distance corr. $ho_{ii} = e^{-\|l_i l_j\|}$
- ▶ Constant step-size $\epsilon = 10^{-2.75}$
 - \Rightarrow Prox. func. $\|\mathbf{w}_i \mathbf{w}_j\|^2 \le \gamma_{ij}$
 - $\Rightarrow \gamma_{ii} \Rightarrow$ sample correlation
- Comparable performance to (recursive) Weiner-Hopf estimator
 - ⇒ via proximity constraints

(b) Constraint Violation over iteration *t*

Dictionary Learning

Introduction

Generalized Linear Models

Networked Regret Minimization
Online Learning in Complex Networks

Dictionary Learning

Robot Path-Planning
Decentralized Dynamic Discriminative Dictionaries

Nonparametric Regression

Conclusion

Appendix

Reducing Inference Error Rates

- ▶ In distributed convex setting ⇒ we achieve optimum of ERM
 - ⇒ even when data is scattered across a multi-agent network
 - \Rightarrow mediocre accuracy \Rightarrow complexity of relating **x** and **y**
- ▶ Need better estimator ⇒ alternative data representations
 - ⇒ Signal encoding ⇒ Fourier, wavelets, PCA, or data-driven
 - ⇒ Task-driven: tailor dictionary to inference (Mairal '12)

Figure: Initialized (left) and learned (right) dictionary for small image patches.

Dictionary Learning

- ▶ Represent signals \mathbf{x}_t as combos. of k basis elements $\{\mathbf{d}_l\}_{l=1}^k$
 - \Rightarrow learn dictionary $\mathbf{D} \in \mathbb{R}^{m \times k}$ from data
 - \Rightarrow Denote the coding of \mathbf{x}_t as $\alpha_t \in \mathbb{R}^k$
- ▶ Representation loss $g(\alpha_t, \mathbf{D}; \mathbf{x}_t)$ ⇒ small if $\mathbf{D}\alpha_t$ and \mathbf{x}_t close
 - \Rightarrow **D** α_t is representation of **x**_t w.r.t dictionary **D**
- Formulate the coding problem

$$lpha^*(\mathbf{D}; \mathbf{x}_t) := \operatorname*{argmin}_{oldsymbol{lpha}_t \in \mathbb{R}^k} g(lpha_t, \mathbf{D}; \mathbf{x}_t) \ .$$

- Dictionary learning
 - \Rightarrow seek **D** such that signals \mathbf{x}_t well-represented by $\mathbf{D}\alpha^*(\mathbf{D};\mathbf{x}_t)$

Discriminative Dictionary Learning

- Tailor dictionary to discriminative modeling task
- ▶ Use coding $\alpha^*(\mathbf{D}; \mathbf{x}_t)$ as representation of signal \mathbf{x}_t
- ▶ Decision variable \mathbf{w} ⇒ predict the label/vector \mathbf{y}_t given $\alpha^*(\mathbf{D}; \mathbf{x}_t)$.
- ▶ Loss function $\ell(\mathbf{D}, \mathbf{w}; (\mathbf{x}_t, \mathbf{y}_t)) = \ell(\alpha^*(\mathbf{D}; \mathbf{x}_t), \mathbf{D}, \mathbf{w}; (\mathbf{x}_t, \mathbf{y}_t))$
 - \Rightarrow predictive quality of **w** for var. \mathbf{y}_t given coding $\alpha^*(\mathbf{D}; \mathbf{x}_t)$
- Discriminative dictionary learning

$$(\textbf{D}^*, \textbf{w}^*) := \underset{\textbf{D} \in \mathcal{D}, \textbf{w} \in \mathcal{W}}{\text{argmin}} \; \mathbb{E}_{\textbf{x}, \textbf{y}} \Big[\ell \big(\textbf{D}, \textbf{w}; (\textbf{x}, \textbf{y}) \big) \Big].$$

- ⇒ Learn jointly regression weights w and dictionary D
- ⇒ Non-convex stochastic program

Robot Path-Planning

Introduction

Generalized Linear Models

Networked Regret Minimization
Online Learning in Complex Networks

Dictionary Learning

Robot Path-Planning
Decentralized Dynamic Discriminative Dictionaries

Nonparametric Regression

Conclusion

Appendix

Application: Uncertain Robot Path-Planning

- ► One role for learning in robotics: learn model uncertainty
- Simplified physics models used for control due to complexity
 - ⇒ Models are available. Not perfect but not useless either
 - ⇒ Replace mechanical models with learned models
- Learn mismatch between model and reality when
 - ⇒ This mismatch has variability across different terrains
- Use sensory input to learn uncertainty in execution of controller

Formulating Disturbance

Consider a discrete nonlinear state-space system of equations

$$\mathbf{x}_{k+1} = f(\mathbf{x}_k, \mathbf{u}_k) + g(\mathbf{a}_k) = f(\mathbf{x}_k, \mathbf{u}_k) + g(\mathbf{u}_k, \mathbf{z}_k)$$

- ▶ \mathbf{x}_k ⇒ state vector, \mathbf{u}_k ⇒ control input, \mathbf{z}_k ⇒ sensory input
- ▶ Kinematic model $f(\mathbf{x}_k, \mathbf{u}_k)$ not exact \Rightarrow add mismatch term $g(\mathbf{a}_k)$
 - \Rightarrow Want to learn $g(\mathbf{a}_k)$ to use as input to robust control block
- ▶ Measure estimate $\hat{\mathbf{x}}_k$ of state \mathbf{x}_k (with on-board IMU, for instance)

$$\hat{g}(\mathbf{a}_{k-1}) = \hat{\mathbf{x}}_k - f(\mathbf{x}_{k-1}, \mathbf{u}_{k-1})$$
.

- ▶ Learning $\hat{g}(\mathbf{a}_{k-1})$ is challenging
 - ⇒ Captures difficult-to-model physics we typically ignore
 - ⇒ Dictionary leaning approach

Dictionary-Based Learning Architecture

- ▶ Platform's state x, control u intended by a kinematic planner
 ⇒ differ from measured ground truth x̂ by disturbance g
- ► This difference, as well as state, control, and visual features
 - \Rightarrow Fed into dictionary learning method \Rightarrow disturbance pred. \hat{g}
 - ⇒ Dictionary is a statistical model using sparse approximation

Parametric representation of disturbance

▶ Model disturbance $\hat{g}(\mathbf{a})$ as Gaussian conditional on features \mathbf{a}

$$\mathbb{P}[\hat{g}(\mathbf{a}) \mid \mathbf{a}] = \frac{1}{\sqrt{2\pi\sigma^2(\mathbf{a})}} \exp\left[-\frac{(\hat{g}(\mathbf{a}) - \mu(\mathbf{a}))^2}{2\sigma^2(\mathbf{a})}\right] \ .$$

- ▶ Distribution parameterized by unknown mean $\mu(\mathbf{a})$, var. $\sigma^2(\mathbf{a})$ ⇒ which depend on control \mathbf{u}_k and sensory input \mathbf{z}_k
- ▶ Realizations of $(\mathbf{a}, \hat{g}(\mathbf{a}))$ available online
- Sequentially obtained while exploring feature space
- Utilize to learn parametric representation of the distribution

Disturbance Prediction as Dictionary Learning

- $\blacktriangleright \ \ \text{Learn online mean, variance} \ \Rightarrow \text{introduce regressors} \ \textbf{w}_1, \ \textbf{w}_2$
 - \Rightarrow predict first, second-order stats. $\mu(\mathbf{a})$ and $\sigma^2(\mathbf{a})$, given \mathbf{a}

$$\hat{\mu}(\mathbf{a}) = \mathbf{w}_1^\mathsf{T} \mathbf{a} \;, \quad \hat{\sigma}^2(\mathbf{a}) = \sigma_{\mathsf{min}}^2 + \left(\mathbf{w}_2^\mathsf{T} \mathbf{a} + \sigma_{\mathsf{init}}^2\right)^2$$

▶ Rather than use **a** directly, use a sparse code $\alpha^*(\mathbf{D}; \mathbf{a})$

$$\hat{\mu}(\mathbf{a}) = \mathbf{w}_1^\mathsf{T} \boldsymbol{\alpha}^*(\mathbf{D}; \mathbf{a}) \;, \quad \hat{\sigma}^2(\mathbf{a}) = \sigma_{\min}^2 + \left(\mathbf{w}_2^\mathsf{T} \boldsymbol{\alpha}^*(\mathbf{D}; \mathbf{a}) + \sigma_{\mathrm{init}}^2\right)^2$$

- \Rightarrow Regress on sparse approximation $\alpha^*(\mathbf{D}; \mathbf{a})$ w.r.t. dictionary \mathbf{D}
- ▶ Motivation for using sparse code $\alpha^*(\mathbf{D}; \mathbf{a})$, learning dictionary \mathbf{D} :
 - $\Rightarrow g(\cdot)$ relates robotic sensory perception, unexpected dynamics
 - \Rightarrow Relationship between $(\mathbf{a}, \hat{g}(\mathbf{a}))$ highly nonlinear
 - ⇒ Estimation accuracy ⇒ boosted via alternative encoding

Task-Driven Dictionary Learning

- ▶ Dictionary $\mathbf{D} = \{\mathbf{d}_l\}_{l=1}^m$, $\mathbf{d}_l \in \mathbb{R}^k$ composed of m basis elements
- ▶ Estimate $\hat{\mathbf{a}}_k = \mathbf{D}\alpha_k$ as linear combo. of dictionary elements
- Select coefficients that yield a sparse code (elastic net)

$$\alpha^*(\mathbf{D}; \mathbf{a}_k) := \underset{\alpha \in \mathbb{R}^k}{\operatorname{argmin}} \|\mathbf{a}_k - \mathbf{D}\alpha\|^2 + \lambda \|\alpha\|_1 + \nu \|\alpha\|_2^2$$

Jointly learn dictionary and regressors w₁ and w₂

$$(\boldsymbol{D}^*, \boldsymbol{w}_1^*\!,\!\boldsymbol{w}_2^*)\!:=\!\mathop{\text{argmin}}_{\boldsymbol{D}\in\mathcal{D},\boldsymbol{w}_1,\boldsymbol{w}_2}\!\mathbb{E}_{\boldsymbol{a},\hat{\boldsymbol{g}}(\boldsymbol{a})}\!\!\left(\!\!-\!\log\mathbb{P}[\hat{\boldsymbol{g}}(\boldsymbol{a})\!\mid\!\boldsymbol{a},\boldsymbol{D},\boldsymbol{w}_1,\boldsymbol{w}_2]\right)\!.$$

- ▶ Non-convex but convex w.r.t. **D** and **w**₁ and **w**₂ separately
- ▶ Objective is an expectation over dataset ⇒ use stochastic grad.

Learning: SGD + Sparse Coding

▶ Observe signals \mathbf{z}_k , use past control \mathbf{u}_k to compute coding

$$\boldsymbol{\alpha}_k^* \coloneqq \underset{\boldsymbol{\alpha}_k \in \mathbb{R}^s}{\operatorname{argmin}} (1/2) \| \boldsymbol{a}_k - \boldsymbol{\mathsf{D}} \boldsymbol{\alpha}_k \|_2^2 + \lambda \| \boldsymbol{\alpha}_k \|_1 + \nu \| \boldsymbol{\alpha}_k \|_2,$$

⇒ Update dictionary using stoch. grad. step w.r.t. dictionary

$$\mathbf{D}_{k+1} = \mathbf{D}_k - \epsilon_k \left(\nabla_{\mathbf{D}} \log \mathbb{P}[\hat{g}(\mathbf{a}_k) | \mathbf{a}_k, \mathbf{D}_k, \mathbf{w}_{1,k}, \mathbf{w}_{2,k}] \right)$$

Update regressors along regressor gradient of loss function

$$\begin{aligned} \mathbf{w}_{1,k+1} &= \mathbf{w}_{1,k} + \epsilon_k \left(\nabla_{\mathbf{w}_1} \log \mathbb{P}[\hat{g}(\mathbf{a}_k) | \mathbf{a}_k, \mathbf{D}_k, \mathbf{w}_{1,k}, \mathbf{w}_{2,k}] \right) , \\ \mathbf{w}_{2,k+1} &= \mathbf{w}_{2,k} + \epsilon_k \left(\nabla_{\mathbf{w}_2} \log \mathbb{P}[\hat{g}(\mathbf{a}_k) | \mathbf{a}_k, \mathbf{D}_k, \mathbf{w}_{1,k}, \mathbf{w}_{2,k}] \right) , \end{aligned}$$

Converges to locally optimal dictionary and regressors

Implementation on a Ground Robot

Figure: An iRobot *Packbot* was used in our experiments. It was additionally configured with a high-resolution camera.

We consider a differential drive model of a skid-steer robot

$$f(\mathbf{x}_k, \mathbf{u}_k) = \begin{bmatrix} \dot{x}_k \\ \dot{y}_k \\ \dot{\theta}_k \end{bmatrix} = \underbrace{\begin{bmatrix} \cos(\theta_k) & -\sin(\theta_k) & 0 \\ \sin(\theta_k) & \cos(\theta_k) & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{A(\theta)} \begin{bmatrix} \nu_k \\ \omega_k \end{bmatrix}$$

▶ Disturbance ⇒ commanded & actual angular velocity difference

Feature Construction

▶ Visual patch \mathbf{z}_k ⇒ associated with the portion of ground ⇒ Collect images over time horizon of planned robot trajectory

- From the raw patch we construct statistical visual features \mathbf{c}_k
 - ⇒ mean, variance, skewness, kurtosis of RGB color channels
 - \Rightarrow Textures \mathbf{h}_k via texton histogram (Leung '99)
- ▶ Concatenated with average linear, angular velocity in [k, k+1]

Empirical Performance Comparison

- Model fit of disturbance to task driven dictionary learnt dist.
- Compared to (windowed) recursive average of mean, variance

Figure: Comparison of dictionary learning vs. classical alternatives.

- Superior model fit to Gaussian approximation of disturbance
- Exploits sensory input to identify terrain type
 - ⇒ Pavement or grass essentially. But more granular than that

Predicting Future Uncertainty

- Test trajectory with predicted & actual disturbance stats. overlaid
- Measured dist. (green) and predicted dist. (blue) for trajectory
 - \Rightarrow Predicted mean and $\pm 2\sigma$ envelope shown

Observations are mostly contained within confidence envelopes

Future Uncertainty Cones

➤ Actual trajectory not contained within cones for initial dictionary

⇒ But contained within cone after dictionary is properly learnt

Decentralized Dynamic Discriminative Dict.

Introduction

Generalized Linear Models

Networked Regret Minimization
Online Learning in Complex Networks

Dictionary Learning

Robot Path-Planning
Decentralized Dynamic Discriminative Dictionaries

Nonparametric Regression

Conclusion

Appendix

Multi-Agent Dictionary Learning

- ► Dictionary-based estimations better than GLM
 - ⇒ but what if data is scattered across a network?
- ▶ Incentivize agreement via constraint $\mathbf{D}_i = \mathbf{D}_i, \mathbf{w}_i = \mathbf{w}_i$ for all $j \in n_i$
- Decentralized task-driven dictionary learning problem

$$\begin{aligned} \{\mathbf{D}_{i}^{*}, \mathbf{w}_{i}^{*}\}_{i=1}^{V} := & \underset{\mathbf{D}_{i} \in \mathcal{D}, \mathbf{w}_{i} \in \mathcal{W}}{\operatorname{argmin}} & \sum_{i=1}^{V} \mathbb{E}_{\mathbf{x}_{i}, \mathbf{y}_{i}} \left[\ell \left(\mathbf{D}_{i}, \mathbf{w}_{i}; \left(\mathbf{x}_{i}, \mathbf{y}_{i} \right) \right) \right]. \\ & \text{such that} & \mathbf{D}_{i} = \mathbf{D}_{j}, \mathbf{w}_{i} = \mathbf{w}_{j} \text{ for all } j \in n_{i} \end{aligned}$$

- Similar to networked regret minimization
- Enforcing agreement constraint would require global coordination
 - ⇒ Define stochastic Lagrangian ⇒ distributed alg.

$$\hat{\mathcal{L}}_t(\mathbf{D}, \mathbf{w}, \mathbf{\Lambda}, \boldsymbol{\nu}) = \sum_{i=1}^{V} \left[\ell(\mathbf{D}_i, \mathbf{w}_i; (\mathbf{x}_{i,t}, \mathbf{y}_{i,t})) \right] + \operatorname{tr}(\mathbf{\Lambda}^T \mathbf{C}_D \mathbf{D}) + \boldsymbol{\nu}^T \mathbf{C}_W \mathbf{w}$$

Block-Stochastic Saddle Point Method

- ▶ Decentralized online dict. learning ⇒ Block saddle point alg.
- ▶ Stochastic approximation: $\mathcal{L}(\mathbf{D}, \mathbf{w}, \mathbf{\Lambda}, \mathbf{\nu}) = \mathbb{E}_{\mathbf{x}, \mathbf{y}}[\hat{\mathcal{L}}_t(\mathbf{D}, \mathbf{w}, \mathbf{\Lambda}, \mathbf{\nu})]$
 - ⇒ primal stochastic gradient descent

$$\begin{aligned} \mathbf{D}_{t+1} &= \mathbf{D}_t - \epsilon_t \nabla_{\mathbf{D}} \hat{\mathcal{L}}_t(\mathbf{D}_t, \mathbf{w}_t, \mathbf{\Lambda}_t, \mathbf{\nu}_t) ,\\ \mathbf{w}_{t+1} &= \mathbf{w}_t - \epsilon_t \nabla_{\mathbf{w}} \hat{\mathcal{L}}_t(\mathbf{D}_t, \mathbf{w}_t, \mathbf{\Lambda}_t, \mathbf{\nu}_t) . \end{aligned}$$

⇒ dual stochastic gradient ascent

$$\begin{split} \boldsymbol{\Lambda}_{t+1} &= \boldsymbol{\Lambda}_t + \epsilon_t \nabla_{\boldsymbol{\Lambda}} \hat{\mathcal{L}}_t(\boldsymbol{\mathsf{D}}_{t+1}, \boldsymbol{\mathsf{w}}_{t+1}, \boldsymbol{\Lambda}_t, \boldsymbol{\nu}_t) \;, \\ \boldsymbol{\nu}_{t+1} &= \boldsymbol{\nu}_t + \epsilon_t \nabla_{\boldsymbol{\nu}} \hat{\mathcal{L}}_t(\boldsymbol{\mathsf{D}}_{t+1}, \boldsymbol{\mathsf{w}}_{t+1}, \boldsymbol{\Lambda}_t, \boldsymbol{\nu}_t) \;. \end{split}$$

▶ $\nabla_{\mathbf{D}} \hat{\mathcal{L}}_t(\mathbf{D}_t, \mathbf{w}_t, \mathbf{\Lambda}_t, \nu_t)$ \Rightarrow Projected stoch. grad. w.r.t. \mathbf{D} \Rightarrow gradient approximated with current signals $\{\mathbf{x}_{i,t}, \mathbf{y}_{i,t}\}_{i=1}^{V}$

Local View of Algorithm

- ▶ At agent *i*, time *t*, observe $(\mathbf{x}_{i,t}, \mathbf{y}_{i,t})$,
- ▶ Compute coding $\alpha_{i,t+1}^{\star} = \operatorname{argmin}_{\alpha \in \mathbb{R}^k} g(\alpha, \mathbf{D}_{i,t}; \mathbf{x}_{i,t})$ ⇒ In practice chosen as *sparse coding* via lasso or elastic-net
- ▶ Update primal variables at agent i

$$\begin{split} \mathbf{D}_{i,t+1} &= \mathbf{D}_{i,t} - \epsilon_t \bigg(\nabla_{\mathbf{D}_i} \ell_i(\mathbf{D}_{i,t}, \mathbf{w}_{i,t}; (\mathbf{x}_{i,t}, \mathbf{y}_{i,t})) + \sum_{j \in n_i} (\mathbf{\Lambda}_{ij,t} - \mathbf{\Lambda}_{ji,t}) \bigg) \;, \\ \mathbf{w}_{i,t+1} &= \mathbf{w}_{i,t} - \epsilon_t \bigg(\nabla_{\mathbf{w}_i} \ell_i(\mathbf{D}_{i,t}, \mathbf{w}_{i,t}; (\mathbf{x}_{i,t}, \mathbf{y}_{i,t})) + \sum_{j \in n_i} (\boldsymbol{\nu}_{ij,t} - \boldsymbol{\nu}_{ji,t}) \bigg) \;, \end{split}$$

▶ Update dual variables at network communication link (i, j)

$$\Lambda_{ij,t+1} = \Lambda_{ij,t} + \epsilon_t \left(\mathbf{D}_{i,t} - \mathbf{D}_{j,t} \right)
\nu_{ij,t+1} = \nu_{ij,t} + \epsilon_t \left(\mathbf{w}_{i,t} - \mathbf{w}_{j,t} \right)$$

Convergence Result

Theorem

Saddle pt. seq. $(\mathbf{D}_t, \mathbf{w}_t, \Lambda_t, \nu_t)$ converges to stationarity in expectation:

$$\begin{split} & \lim_{t \to \infty} \mathbb{E}[\|\nabla_{\textbf{D}} \mathcal{L}(\textbf{D}_t, \textbf{w}_t, \boldsymbol{\Lambda}_t, \nu_t)\|] = 0 \ , \\ & \lim_{t \to \infty} \mathbb{E}[\|\nabla_{\textbf{w}} \mathcal{L}(\textbf{D}_t, \textbf{w}_t, \boldsymbol{\Lambda}_t, \nu_t)\|] = 0 \end{split}$$

Asymptotic feasibility condition achieved in expectation:

$$\lim_{t \to \infty} \mathbb{E}[\|\nabla_{\mathbf{\Lambda}} \mathcal{L}(\mathbf{D}_t, \mathbf{w}_t, \mathbf{\Lambda}_t, \nu_t)\|] = 0$$

$$\lim_{t \to \infty} \mathbb{E}[\|\nabla_{\nu} \mathcal{L}(\mathbf{D}_t, \mathbf{w}_t, \mathbf{\Lambda}_t, \nu_t)\|] = 0$$

- ► Performance guarentee for D4L
 - ⇒ convergence in non-convex stochastic opt.
 - ⇒ sensitive to data distribution, step-size, network structure

Image Processing Experiments

- ► Texture database classification problem ⇒ Brodatz textures
 - ⇒ Insight into dynamic image processing problems
 - ⇒ Toy model of real-time navigability analysis in robotic teams
- ▶ Real-time image data ⇒ train multi-class logistic reg. weights
- Decentralized dynamic texture classification
 - ⇒ Subset of textures: {grass, bark, straw, herringbone_weave}

Figure: Sample images from Brodatz textures.

Incomplete Sampling

Figure: Local loss (left) and classification accuracy (right) versus iteration t.

- ▶ V = 10 node random network, results shown for random $j \in V$
- Agents observe random incomplete subsets of feature space
- Still learn global information and reach consensus
- Moderate classifier performance
 - ⇒ due to small step-size required for convergence
 - ⇒ Small step-sizes required for convergence

Robotic Field Setting

- Each robot in the network sequentially observes images
 - ⇒ partitions them into small patches
 - ⇒ classify patches with multi-class logistic regression.
- Terrain classification has been used as a layer in robust control
 - ⇒ Classes are terrains of varying traversability
- ▶ Data from Lejeune Robotics Test Facility ⇒ Thanks to ARL!

Figure: Sample image (left) from a N = 3 robot network of Huskies (right).

Results on Robotic Network

Figure: Local loss (left) and classification accuracy (right) versus iteration t. V=3 complete graph w/ complete sampling.

- Main takeaways: training is slow, but convergent
 - ⇒ due to necessity of small step-sizes
 - ⇒ good for centralized learning, slow in distributed case
- Non-convexity makes training/optimization challenging
 - ⇒ nonlinear classifiers + convex training? ⇒ flexible dictionary

Nonparametric Regression

Introduction

Generalized Linear Models

Networked Regret Minimization
Online Learning in Complex Networks

Dictionary Learning

Robot Path-Planning
Decentralized Dynamic Discriminative Dictionaries

Nonparametric Regression

Conclusion

Appendix

Large-Scale Function Estimation

- ▶ Learning nonlinear statistical models ⇒ function estimation
- ▶ Want to find $f^* \in \mathcal{H}$ to minimize regularized expected risk R(f)

$$f^* = \operatorname*{argmin}_{f \in \mathcal{H}} R(f) := \operatorname*{argmin}_{f \in \mathcal{H}} \mathbb{E}_{\mathbf{x}, \mathbf{y}}[\ell(f(\mathbf{x}), y)] + \frac{\lambda}{2} \|f\|_{\mathcal{H}}^2$$

- \Rightarrow Loss $\ell: \mathcal{H} \times \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ penalize deviations between $f(\mathbf{x})$, \mathbf{y}
- ▶ Generally intractable ⇒ infinite dimensional data-dependent opt.

Large-Scale Function Estimation

- ► Learning nonlinear statistical models ⇒ function estimation
- ▶ Want to find $f^* \in \mathcal{H}$ to minimize regularized expected risk R(f)

$$f^* = \operatorname*{argmin}_{f \in \mathcal{H}} R(f) := \operatorname*{argmin}_{f \in \mathcal{H}} \mathbb{E}_{\mathbf{x}, \mathbf{y}}[\ell(f(\mathbf{x}), y)] + \frac{\lambda}{2} \|f\|_{\mathcal{H}}^2$$

- \Rightarrow Loss $\ell : \mathcal{H} \times \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ penalize deviations between $f(\mathbf{x})$, \mathbf{y}
- ▶ Generally intractable ⇒ infinite dimensional data-dependent opt.
- ▶ Reproducing kernels ⇒ framework to make this task possible!
 - $\Rightarrow \mathcal{H}$ is equipped with unique *kernel function*, $\kappa: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$

$$f^* := \underset{f \in \mathcal{H}}{\text{argmin}} \, \mathbb{E}_{\mathbf{x},\mathbf{y}}[\ell(\sum_{n \in \mathcal{I}} w_n \kappa(\mathbf{x}_n,\mathbf{x}),y)] + \frac{\lambda}{2} \| \sum_{n,m \in \mathcal{I}} w_n w_m \kappa(\mathbf{x}_n,\mathbf{x}_m) \|_{\mathcal{H}}^2$$

⇒ via use of Representer Theorem, dating back to Riesz Thm.

Nonlinear Inferences: Dictionaries vs. Kernels

- ▶ Kernel methods learn function $f(\mathbf{x}) = \sum_{n \in \mathcal{I}} w_n \kappa(\mathbf{x}_n, \mathbf{x})$
 - ⇒ comes from Representer Theorem, dating back to Riesz Thm.
 - $\Rightarrow \mathcal{I}$ is a countably infinite indexing set
- Maintain convexity while learning nonlinear statistical model
 - \Rightarrow complicated representation: $|\mathcal{I}| = \infty$ vs. k basis elements
 - ⇒ flexible dictionary, model conditional density of inference
- Train with functional stochastic gradient descent?

$$f_{t+1}(\cdot) = (1 - \eta_t \lambda) f_t - \eta_t \ell'(f_t(\mathbf{x}_t), \mathbf{y}_t) \kappa(\mathbf{x}_t, \cdot)$$

- ▶ Problem: training complexity with SGD is cubic in iteration index
 - ⇒ Sparsify the solution? Need to sparsify training

Online Multi-Class Kernel SVM

We implement functional generalization of SGD

$$\begin{split} \tilde{f}_{t+1}(\cdot) &= (1 - \eta_t \lambda) f_t - \eta_t \ell'(f_t(\mathbf{x}_t), \mathbf{y}_t) \kappa(\mathbf{x}_t, \cdot) \\ (f_{t+1}, \mathbf{D}_{t+1}, \mathbf{w}_{t+1}) &= \mathbf{KOMP}(\tilde{f}_{t+1}, \tilde{\mathbf{D}}_{t+1}, \tilde{\mathbf{w}}_{t+1}, \epsilon_t) \end{split}$$

- \Rightarrow operating in tandem with projection step onto subspaces of ${\cal H}$
- ⇒ subspaces greedily constructed via matching pursuit

$$f_{t+1} = \operatorname*{argmin}_{f \in \mathcal{H}_{\mathbf{D}_{t+1}}} \left\| f - \left((1 - \eta_t \lambda) f_t - \eta_t \nabla_f \ell(f_t(\mathbf{x}_t), y_t) \right) \right\|_{\mathcal{H}}^2$$

- ▶ Proposed work: online training of sparsified kernel classifiers
 - ⇒ Main problem: sparsification bias may ruin stochastic descent

Online Multi-Class Kernel SVM

- Case where training examples for a fixed class
 - ⇒ drawn from a distinct Gaussian mixture
- ightharpoonup 3 Gaussians per mixture, C = 5 classes total for this experiment
 - ⇒ 15 total Gaussians generate data

Online Multi-Class Kernel SVM

- Case where training examples for a fixed class
 - ⇒ drawn from a distinct Gaussian mixture
- \triangleright 3 Gaussians per mixture, C=5 classes total for this experiment
 - ⇒ 15 total Gaussians generate data

- ▶ Grid colors ⇒ decision, bold black dots ⇒ kernel dict. elements
- ▶ ~ 97% accuracy

Conclusion

Introduction

Generalized Linear Models

Networked Regret Minimization
Online Learning in Complex Networks

Dictionary Learning

Robot Path-Planning
Decentralized Dynamic Discriminative Dictionaries

Nonparametric Regression

Conclusion

Appendix

Conclusion

Conclusion

- Can establish strong convergence guarantees for GLMs
 - ⇒ In centralized and distributed online cases
 - \Rightarrow But we are solving the wrong problem \Rightarrow too far from $\hat{y}^*(\mathbf{x})$
- ▶ Dictionary methods ⇒ richer estimators, nonlinear classifiers
 - ⇒ promising results on robotics application
 - \Rightarrow non-convexity \Rightarrow challenge to train in distributed setting
- Kernel methods allow learning nonlinear classifiers
 - ⇒ preserve convexity, directly model conditional density
 - ⇒ but training has prohibitive complexity in online setting
- Proposal: learn kernel classifiers online with low complexity

References

Journals

- A. Koppel, F. Jakubeic, and A. Ribeiro, "A saddle point algorithm for networked online convex optimization," IEEE Trans. Signal Process., vol.PP, no.99, June. 2015.
- A. Koppel, B. Sadler, and A. Ribeiro, "Proximity without Consensus in Online Multi-Agent Optimization," in IEEE Trans. Signal Proc. (submitted), June 2016.
- A. Koppel, G. Warnell, E. Stump, and A. Ribeiro, "D4L: Decentralized Dynamic Discriminative Dictionary Learning," in IEEE Trans.
 Signal Info. Process over Networks (submitted)., June. 2016.

Conferences

- A. Koppel, F. Jakubeic and A. Ribeiro, "Regret Bounds of a distributed saddle point algorithm," in Proc. Int. Conf. Accoustics Speech Signal Process., Brisbane, Australia, Apr 19-24 2015.
- A. Koppel, F. Y. Jakubiec, and A. Ribeiro, "A saddle point algorithm for networked online convex optimization." in 39th Proc. Int. Conf. Acoust. Speech Signal Process., Florence, Italy, May 4-9 2014, pp. 8292 8296.
- A. Koppel, B. M. Sadler and A. Ribeiro, "Proximity without consensus in online multi-agent optimization," in Proc. Int. Conf. Accoustics Speech Signal Process., Shanghai, China, Mar. 20-25 2016.
- A. Koppel, B. M. Sadler, and A. Ribeiro, "Decentralized Online Optimization with Heterogeneous Data Sources", IEEE Global Conference on Signal and Information Processing (to appear), Washington, DC, Dec. 7-9, 2016.
- A. Koppel, J. Fink, G. Warnell, E. Stump, and A. Ribeiro, "Online Learning for Characterizing Unknown Environments in Ground Robotic Vehicle Models," in Proc. Int. Conf. Intelligent Robotics and Systems, Daejeon, Korea, Oct9-Oct14 2016
- A. Koppel, G. Warnell, and E. Stump. "Task-Driven Dictionary Learning in Distrubted Online Settings." in Proc. Asilomar Conf. on Signals Systems Computers, Pacific Grove, CA, November 8-11 2015.
- A. Koppel, G. Warnell, E. Stump, and A. Ribeiro, "D4L: Decentralized Dynamic Discriminative Dictionary Learning," in Proc. Int. Conf. Intelligent Robotics and Systems, Hamburg, Germany, Sep 28-Oct2 2015.

Appendix

Introduction

Generalized Linear Models

Networked Regret Minimization
Online Learning in Complex Networks

Dictionary Learning

Robot Path-Planning
Decentralized Dynamic Discriminative Dictionaries

Nonparametric Regression

Conclusion

Appendix

DSPA: Technical Assumptions

▶ The network \mathcal{G} is symmetric and connected with diameter D.

▶ Loss function gradients for any **w** bounded by constant *G*, i.e.

$$\|\nabla \ell_t(\mathbf{w})\|_2 \leq G$$
.

▶ Losses $\ell_{i,t}(\mathbf{x})$ are Lipschitz continuous with modulus $K_{i,t} \leq K$

$$\|\ell_{i,t}(\mathbf{w}) - \ell_{i,t}(\mathbf{w})\|_2 \le K_{i,t}\|\mathbf{w} - \mathbf{v}\|_2 \le K\|\mathbf{w} - \mathbf{v}\|_2$$

D4L: Technical Assumptions

- ▶ Network \mathcal{G} ⇒ symmetric and connected with diameter D.
- ▶ Diminishing step-size rules: $\sum_{t=0}^{\infty} \epsilon_t = \infty$ and $\sum_{t=0}^{\infty} \epsilon_t^2 < \infty$
- Mean and variance conditions of Lagrangian stochastic gradients

$$\begin{split} \mathbb{E}[\|\boldsymbol{\delta}_{\mathsf{D},t}\| \mid \mathcal{F}_t] &\leq A\epsilon_t \;, \\ \mathbb{E}[\|\nabla_{\mathsf{D}}\hat{\mathcal{L}}_t(\mathbf{D}_t, \mathbf{x}_t, \boldsymbol{\Lambda}_t, \boldsymbol{\nu}_t)\|^2 \mid \mathcal{F}_t] &\leq \sigma^2. \end{split}$$

Feasible dictionary set is those with unit column-norms

$$\mathcal{D} = \{ \mathbf{D} \in \mathbb{R}^{m \times k} : \|\mathbf{d}_j\| \leq 1, j = 1 \dots k \}.$$

Decentralized Online SVM

► Instantaneous loss ⇒ hinge loss at current data point

$$\ell_{i,t}(\mathbf{w}) = \frac{\zeta}{2} \|\mathbf{w}\|_2^2 + \max\left(0, 1 - y_{i,t}\mathbf{w}^T\mathbf{x}_{i,t}\right)$$

- ▶ Reg_T measures price of distributed causal classifier training
- Algorithm Formulation

$$\begin{aligned} \mathbf{w}_{i,t+1} &= \mathcal{P}_{\mathcal{W}} \Big[\mathbf{w}_{i,t} - \epsilon \Big(\zeta \mathbf{w}_{i,t} - y_{i,t} \mathbf{x}_{i,t} \mathbb{I} \big(y_{i,t} \mathbf{w}_{i,t}^T \mathbf{x}_{i,t} < 1 \big) + \sum_{j \in n_i} (\lambda_{ij,t} - \lambda_{ji,t}) \Big) \Big], \\ \lambda_{ij,t+1} &= \mathcal{P}_{\Lambda_{ij}} \Big[\lambda_{ij,t} + \epsilon \left(\mathbf{w}_{i,t} - \mathbf{w}_{j,t} \right) \Big]. \end{aligned}$$

- ▶ Limit classifier complexity to set $W = \{\mathbf{w}_i \in \mathbb{R}^p : ||\mathbf{w}_i||_2 \le \zeta\}$
- $ightharpoonup \mathbb{I}(y_{i,t}\mathbf{w}^T\mathbf{x}_{i,t}<1)=1 \text{ if } y_{i,t}\mathbf{w}^T\mathbf{x}_{i,t}<1, \mathbb{I}(y_{i,t}\mathbf{w}^T\mathbf{x}_{i,t}<1)=0 \text{ else}$
- Projected Perceptron with dual correction (neighbor info)

Sparse Multi-class texture classification

- ▶ Multi-class logistic reg. prob. \Rightarrow Agent *i* receives signals $\mathbf{x}_{i,t}$ \Rightarrow output a decision variable $\mathbf{y}_{i,t} \in \{0,1\}^C \Rightarrow C$ no. of classes
- ▶ $[\mathbf{y}_{i,t}]_c$ \Rightarrow binary indicator of whether signal falls in class c.
- ▶ Local loss $\ell_i \Rightarrow$ negative log-likelihood of prob. model

$$\ell_i(\mathbf{D}_i, \mathbf{W}_i; (\theta_i, \mathbf{y}_i)) = \log \left(\sum_{c=1}^C e^{\mathbf{w}_{i,c}^T \boldsymbol{\alpha}_i^* + \mathbf{w}_{i,c}^0} \right) \\ - \sum_{c=1}^C \left(y_{i,c} \mathbf{w}_{i,c}^T \boldsymbol{\alpha}_i^* + \mathbf{w}_{i,c}^0 \right) + \xi \|\mathbf{W}_i\|_F^2,$$

- $ightharpoonup \alpha_i^* \Rightarrow$ sparse coding via elastic-net min. prob.
- ▶ $g_c(\alpha_i^*) = e^{\mathbf{w}_{i,c}^* \alpha_i^* + \mathbf{w}_{i,c}^0}$ is activation function; ⇒ $g_c(\mathbf{z}_i) / \sum_{c'} g_{c'}(\mathbf{z}_i)$ ⇒ prob. \mathbf{z}_i in class c⇒ \mathbf{z}_i ⇒ average of image sub-patches
- ► Classification decision ⇒ maximum likelihood class label

$$\Rightarrow \tilde{c} = \operatorname{argmax}_{c} g_{c}(\mathbf{z}_{i}) / \sum_{c'} g_{c'}(\mathbf{z}_{i}); \quad [\mathbf{y}_{i,t}]_{c} = 0 \text{ for } c \neq \tilde{c}$$

Large-Scale Function Estimation

▶ Equip \mathcal{H} with a unique *kernel function*, $\kappa : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, such that:

$$\begin{aligned} &(i)\ \langle f, \kappa(\mathbf{x}, \cdot))\rangle_{\mathcal{H}} = f(\mathbf{x}) & \text{for all } \mathbf{x} \in \mathcal{X} \ , \\ &(ii)\ \mathcal{H} = \overline{\text{span}\{\kappa(\mathbf{x}, \cdot)\}} & \text{for all } \mathbf{x} \in \mathcal{X} \ . \end{aligned}$$

- ▶ Property (i) ⇒ source of "kernel trick:"
 - \Rightarrow define nonlinear map $\phi(\mathbf{x}) = \kappa(\mathbf{x}, \cdot)$ of feature vector \mathbf{x}
 - \Rightarrow accessed only via inner products $\langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle_{\mathcal{H}} = \kappa(\mathbf{x}, \mathbf{x}')$
- ► Property (ii) ⇒ Representation Thms. from functional analysis
- Kernel examples:
 - \Rightarrow Gaussian/RBF $\kappa(\mathbf{x},\mathbf{x}') = \exp\left\{-\frac{\|\mathbf{x}-\mathbf{x}'\|_2^2}{2c^2}\right\}$
 - \Rightarrow polynomial $\kappa(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}' + b)^c$

- ▶ Consider empirical risk minimization case: sample size $N < \infty$
- Representer Theorem:

$$f^* = \underset{f}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^{N} \ell(f(\mathbf{x}_n), \mathbf{y}_n) \text{ takes the form } f(\mathbf{x}) = \sum_{n=1}^{N} w_n \ \kappa(\mathbf{x}_n, \mathbf{x}) \ .$$

- \Rightarrow **x**_n are feature vectors, and w_n is a scalar weight.
- \Rightarrow f is a kernel expansion over training set

- ▶ Consider empirical risk minimization case: sample size $N < \infty$
- Representer Theorem:

$$f^* = \underset{f}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^{N} \ell(f(\mathbf{x}_n), \mathbf{y}_n) \text{ takes the form } f(\mathbf{x}) = \sum_{n=1}^{N} w_n \ \kappa(\mathbf{x}_n, \mathbf{x}) \ .$$

- \Rightarrow **x**_n are feature vectors, and w_n is a scalar weight.
- \Rightarrow f is a kernel expansion over training set
- ▶ Representer Thm. into ERM \Rightarrow opt. over \mathcal{H} reduces to $\mathbf{w} \in \mathbb{R}^N$

$$f^* = \underset{\mathbf{w} \in \mathbb{R}^N}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^N \ell(\sum_{m=1}^N w_m \kappa(\mathbf{x}_m, \mathbf{x}_n), y_n) + \frac{\lambda}{2} \|\sum_{n,m=1}^N w_n w_m \kappa(\mathbf{x}_m, \mathbf{x}_n)\|_{\mathcal{H}}^2$$
$$= \underset{\mathbf{w} \in \mathbb{R}^N}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^N \ell(\mathbf{w}^T \kappa_{\mathbf{X}}(\mathbf{x}_n), y_n) + \frac{\lambda}{2} \mathbf{w}^T \mathbf{K}_{\mathbf{X}, \mathbf{X}} \mathbf{w}$$

- ▶ Consider empirical risk minimization case: sample size $N < \infty$
- Representer Theorem:

$$f^* = \underset{f}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^{N} \ell(f(\mathbf{x}_n), \mathbf{y}_n) \text{ takes the form } f(\mathbf{x}) = \sum_{n=1}^{N} w_n \; \kappa(\mathbf{x}_n, \mathbf{x}) \; .$$

- \Rightarrow **x**_n are feature vectors, and w_n is a scalar weight.
- \Rightarrow f is a kernel expansion over training set
- ► Example: kernel logistic regression $\mathbb{P}(y = 0 \mid \mathbf{x}) = \frac{\exp\{f(\mathbf{x})\}}{1 + \exp\{f(\mathbf{x})\}}$.

$$= \underset{f \in \mathcal{H}}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^{N} \left[\log \left(1 + \exp\{f(\mathbf{x}_n)\} \right) - \mathbb{I}(y_n = 1) - f(\mathbf{x}_n) \mathbb{I}(y_n = 0) + \frac{\lambda}{2} \|f\|_{\mathcal{H}}^2 \right]$$

$$= \underset{\mathbf{w} \in \mathbb{R}^N}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^{N} \left[\log \left(1 + \exp\{\mathbf{w}^T \kappa_{\mathbf{X}}(\mathbf{x}_n)\} \right) - \mathbb{I}(y_n = 1) - \mathbf{w}^T \kappa_{\mathbf{X}}(\mathbf{x}_n) \mathbb{I}(y_n = 0) + \frac{\lambda}{2} \mathbf{w}^T \mathbf{K}_{\mathbf{X}, \mathbf{X}} \mathbf{w} \right]$$

- ▶ Consider empirical risk minimization case: sample size $N < \infty$
- ► Representer Theorem:

$$f^* = \underset{f}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^{N} \ell(f(\mathbf{x}_n), \mathbf{y}_n) \text{ takes the form } f(\mathbf{x}) = \sum_{n=1}^{N} w_n \ \kappa(\mathbf{x}_n, \mathbf{x}) \ .$$

- \Rightarrow **x**_n are feature vectors, and w_n is a scalar weight.
- \Rightarrow f is a kernel expansion over training set
- ▶ Unfortunately, as sample size $N \to \infty$
 - \Rightarrow kernel matrix $[\mathbf{K}_{\mathbf{X},\mathbf{X}}]_{m,n} := \kappa(\mathbf{x}_m,\mathbf{x}_n)$ becomes infinite too!
 - \Rightarrow **X** = [\mathbf{x}_1 ; \mathbf{x}_2 ; \cdots] \Rightarrow kernel dictionary
 - $\Rightarrow \kappa_{\mathbf{X}}(\cdot) = [\kappa(\mathbf{X}_1, \cdot) \dots \kappa(\mathbf{X}_N, \cdot)]^T \Rightarrow \text{empirical kernel map}$
 - \Rightarrow model order $M(=N) \rightarrow \infty \Rightarrow$ number of dictionary columns
- ➤ Storage/representation issue ⇒ "the curse of kernelization"

Kernel Matching Pursuit

- Fix approx. error ε_t
- ▶ Define subspace $\mathcal{H}_{\mathbf{D}_{t+1}} = \operatorname{span}\{\kappa(\mathbf{d}_n, \cdot)\}_{n=1}^{M_{t+1}}$
- ▶ $\{\mathbf{d}_n\} \subset \{\mathbf{x}_u\}_{u \le t} \Rightarrow \text{model pts.}$ $\Rightarrow \text{subset of past feat. vecs.}$
- Remove kernel dict, elements
- ▶ Stopping criterion: $\|\tilde{f}_{t+1} f_{t+1}\|_{\mathcal{H}} \le \epsilon_t$
- New model order: $M_{t+1} \leq M_t + 1$

Hilbert Space

Parsimonious Online Learning with Kernels

▶ Define un-projected/unsparsified iterate at step t + 1

$$\tilde{\mathbf{f}}_{t+1} = (1 - \eta_t \lambda) \mathbf{f}_t - \eta_t \nabla_f \ell(\mathbf{f}_t; \mathbf{x}_t, \mathbf{y}_t).$$

⇒ parameterized by dictionary and coefficients

$$\tilde{\mathbf{D}}_{t+1} = [\mathbf{D}_t, \ \mathbf{x}_t], \qquad \tilde{\mathbf{w}}_{t+1} = [(1 - \eta_t \lambda) \mathbf{w}_t, \ -\eta_t \ell'(f_t(\mathbf{x}_t), y_t)] \ .$$

- ▶ Our method: $(f_{t+1}, \mathbf{D}_{t+1}, \mathbf{w}_{t+1}) = \mathbf{KOMP}(\tilde{f}_{t+1}, \tilde{\mathbf{D}}_{t+1}, \tilde{\mathbf{w}}_{t+1}, \epsilon_t)$
- This amounts to a certain orthogonal subspace projection

$$f_{t+1} = \underset{f \in \mathcal{H}_{\mathbf{D}_{t+1}}}{\operatorname{argmin}} \left\| f - \left((1 - \eta_t \lambda) f_t - \eta_t \nabla_f \ell(f_t(\mathbf{x}_t), y_t) \right) \right\|_{\mathcal{H}}^2$$
$$:= \mathcal{P}_{\mathcal{H}_{\mathbf{D}_{t+1}}} \left[(1 - \eta_t \lambda) f_t - \eta_t \nabla_f \ell(f_t(\mathbf{x}_t), y_t) \right].$$

- ▶ Recall the Hilbert subspace $\mathcal{H}_{\mathbf{D}_{t+1}} = \operatorname{span}\{\kappa(\mathbf{d}_n, \cdot)\}_{n=1}^{M_{t+1}}$
 - \Rightarrow **d**_n are model points \Rightarrow subset of past feature vectors $\{\mathbf{x}_u\}_{u \leq t}$

Kernel Orthogonal Matching Pursuit (KOMP)


```
Require: function \tilde{f} defined by dict. \tilde{\mathbf{D}} \in \mathbb{R}^{p \times \tilde{M}}, coeffs. \tilde{\mathbf{w}} \in \mathbb{R}^{\tilde{M}}, approx.
                budget \epsilon_t > 0
Initialize f = \tilde{f}, dict. \mathbf{D} = \tilde{\mathbf{D}} (indices \mathcal{I}), model order M = \tilde{M}, coeffs. \mathbf{w} = \tilde{\mathbf{w}}.
                while candidate dictionary is non-empty \mathcal{I} \neq \emptyset do
                       for i = 1, ..., \tilde{M} do
                              Find minimal approx. error with dict. element \mathbf{d}_i removed
                                                   \gamma_j = \min_{\mathbf{w}_{\mathcal{I} \setminus \{j\}} \in \mathbb{R}^{M-1}} \|\tilde{f}(\cdot) - \sum_{k \in \mathcal{I} \setminus \{j\}} \mathbf{w}_k \kappa(\mathbf{d}_k, \cdot)\|_{\mathcal{H}} .
                       end for
                       Find dictionary index minimizing approx. error: j^* = \operatorname{argmin}_{i \in \mathcal{T}} \gamma_i
                           if minimal approximation error exceeds threshold \gamma_{j^*} > \dot{\epsilon_t}
                               stop
                           else
                               Prune dictionary \mathbf{D} \leftarrow \mathbf{D}_{\mathcal{I} \setminus \{j^*\}}, revise \mathcal{I} \leftarrow \mathcal{I} \setminus \{j^*\}
                               Revise model order M \leftarrow M - 1; compute w defined by D
                                                              \mathbf{w} = \operatorname{argmin} \|\tilde{\mathbf{f}}(\cdot) - \mathbf{w}^T \kappa_{\mathbf{D}}(\cdot)\|_{\mathcal{H}}
                           end
                end while
                return f, D, w of model order M < \tilde{M} such that ||f - \tilde{f}||_{\mathcal{H}} < \epsilon_t
```

Online Kernel Multi-Class SVM

- ▶ Given feature vectors \mathbf{x} with labels $y \in \{1, ..., C\}$
 - ⇒ Classifier ⇒ optimize a geometric criterion of separation
- ▶ Kernel multi-class SVM \Rightarrow for class c, function $f_c : \mathcal{X} \to \mathbb{R}$.
 - \Rightarrow Classify $\mathbf{x} \Rightarrow$ max class-conditional prob. $y = \max_{v'} f_{v'}(\mathbf{x})$.
- ▶ Define vectorized function $\mathbf{f} = [f_1, \dots, f_C] \in \mathcal{H}^C$.
 - \Rightarrow Want to minimize λ -regularized multi-class hinge loss

$$\mathbf{f}^* = \underset{\mathbf{f}}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^{N} \ell(\mathbf{f}(\mathbf{x}_n), y_n) + \lambda \sum_{c'=1}^{C} \|f_{c'}\|_{\mathcal{H}}^2 ,$$

$$\Rightarrow \ell(\mathbf{f}(\mathbf{x}), y) = \max(0, 1 + f_r(\mathbf{x}) - f_y(\mathbf{x})), r = \operatorname{argmax}_{c' \neq y} f_{c'}(\mathbf{x}).$$

Online Kernel Multi-Class SVM

- Parameter selection:
 - \Rightarrow Gaussian kernel with bandwidth $\tilde{\sigma}^2 = 0.6$
 - \Rightarrow regularizer $\lambda = 10^{-6}$, constant learning rate $\eta = 6.0$
 - \Rightarrow approximation budget $\epsilon = K \eta^{3/2}$
 - \Rightarrow parsimony constant K = 0.04
 - \Rightarrow Initialize kernel classifier as null, i.e., $f_0 = 0$