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Statistical Inference and Optimization

» Consider (Xx,y) € X x ) as random pair = training examples
» Examples: classificationy € {1,...,c} orregressiony € R
= Perform prediction = optimize statistical inference accuracy

¥ (x) := argmin Exy[I{Y(x) # y)}]
(%)
» In general intractable = distribution P(x,y) is unknown

= but gives clear merit for choosing estimator y
= y*(x) achieves optimal Bayes Risk
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Expected Risk Minimization

» Since optimizing statistical error rate directly is intractable
= Replace 0 — 1 loss = convex loss ¢: W — R, W C RP,
= Estimator y(x) = y(w, x) depends on model parameters w

w' = argmmExy[E(w X, Y)] =N Zf (W; Xn,¥n)

» Can solve optimization problem, define L(w) = Ey y[¢(w; X, Y)]
= but unclear how to choose y(w, x) such that y(w*, x) ~ y*
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Expected Risk Minimization

» Since optimizing statistical error rate directly is intractable
= Replace 0 — 1 loss = convex loss ¢ : W — R, W C RP,
= Estimator y(x) = y(w, x) depends on model parameters w

wh = argmlnExy[E(w Xy =g ZE(W Xn,Yn)

» Can solve optimization problem, define L(w) = Ey y[¢(W; X, Y)]
= but unclear how to choose y(w, x) such that y(w*, x) ~ y*

» We’'ll present approaches to indirectly optimizing accuracy
= Make use of surrogate losses for tractable model training
= Higher complexity y(w*,x) = harder training, closer to y*?
= Therefore, progressively increase complexity of y(w, x)

» Focus: streaming data settings, multi-agent systems
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Statistical Estimators

Ground Truth

Optimal Estimator

Surrogate Estimator | (w*)"x (W) (x,D%) > aWak(Xn,X)

GLMs Dictionaries Kernels

Increasing complexity of statistical model
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Large Scale Learning with GLMs

» Recall ERM prob. = loss ¢, parameter vector w € RP
N
w* := argmin Ey y[¢(W; X, y)] = argmin Z[é(w; Xn,¥Yn)]
w w

n=1

= Alternative measure of performance is regret

N N
Regy = Z@(Wn; Xn,Yn) — ZK(W*? Xn, Yn)
n=1

n=1

» Goal: asymptotic no-regret Reg, /N — 0
= benefit of this perspective is dropping i.i.d. assumption
= Reg,, /N ~ time-average sub-optimality
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Large Scale Learning with GLMs

v

Recall ERM prob. =- loss ¢, parameter vector w € RP
= Alternative measure of performance is regret

N N
Regy = Y ((WniXn,Yn) — > L(W*; Xn,Yn)
n=1

n=1

v

Goal: asymptotic no-regret Regy /N — 0

= benefit of this perspective is dropping i.i.d. assumption

= Regy/N = time-average sub-optimality

N large/data arrives online = can’t compute full gradient of L(w)
= Classically solved with stochastic (online) gradient

v

Wi = Wi — 10 Vwl(We; Xt Ye) £ (W) == £(W; Xt Yt)

» Descend w/ stoch. grad. rather than grad. = one sample/time
» One can establish that w; — w* a.s. and Reg,,/N — 0
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Data Distributed Across a Network

» Network G = (V, &)
=V=V,|E|=E (/%’;I\\

» Neighborhood of agent i
=n={j:(,i)e&} R [
» Repeated game at agent i, time ¢ (f»«._yi\x ro
(il )

= params. W;; = local loss ¢; ;
NN

» Minimize only local loss
.
\”\/\/‘/

= decoupled local learning
» Instead, each agent i aims to
= minimize global loss ¢;(W;) = Z,‘; i 1(Wy)
= only observes local loss ¢;; = collaborate with other agents

Online and Decentralized Statistical Learning
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Networked Regret

» Local Regret of node / of distributed online algorithm
Reg’; = Z Zé, (Wie) =D (W),
t=1 j=1 t=1 j=1
= w* = argmin, >/, 2}/21 ¢ +(w) is the global batch solution

= Quality of node /’s prediction at others’ losses

» Global Networked Regret
v T Vv
Reg; = Z NZZ /tW:r)—Zqu(W
i=1 t=1i,j= t=1 j=1

» Networked online learning goal: Reg’T/T, Reg;/T —0as T
= Measures how well agents learn global information
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» Convexity of ¢;; = unique globally optimal offline strategy w*
= Node predictions should coincide at optimality.

» At each f we want to enforce w; ; = w; ; for j € n;, or Cw; = 0.
= C is node-edge incidence matrix of G.
= W; is stacked version of w; ;.

» Constraint enforcement requires global coordination
= Lagrangian relaxation allows distributed computation

» Online Lagrangian for networked learning problem:

v
Li(We, X)) =D £ 1(Wig) + AT Cw;

i=1

» Convex/concave function in the primal/dual variables

> L:(wy, A;) is stoch. approx. of Lagrangian of prob. (under i.i.d.):
minw 31, Ex, y,[(W;; X;, y;)] such that w; = w;
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Arrow-Hurwicz Saddle Point Method

v

Arrow-Hurwicz saddle pt. to online Lagrangian £:(w;, A¢)
= Primal Lagrangian subgradient descent
= Dual Lagrangian subgradient ascent

Wit = Px[Wi — eV Li(We, Af)]

Atp1 = 'P/\[At + EV)\ET(WI‘, At)]
Initialize Ay = 0 for A; to remain in the image of C
= Required for bounded dual subgradients and constraint slacks
Yields a decentralized algorithm:

v

v

Wit = Pw {Wi,t - E(Vw,éi,t(wi,t) +) N — /\ji,t)}
jen;
Dual step at each edge (/,j) = increase price of disagreement

v

Ajt+1 = Pay [AI’/J e (Wi — W) }
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Global Networked Regret Bound

Theorem
The saddle point alg. sequence with initialization A1 = 0 and constant
step size ¢ = 1/\/T achieves the Global networked regret bound

7
Reg; < g(nm ~ W2+ ECE + G+ GR) = O(VT).

» Reg;/T — 0 with T 7, learning constant depends on . . .
= Network size V and diameter D
= Initialization, Lipschitz constant K, gradient bounds Gy, Gx

» C, must satisfy Cy > DVK + 1 = dual set projection

» Comparable to centralized regret of online gradient descent
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Detecting Attackers in Computer Networks

¢ = log(41), e = 1/+/T, N = 50 cycle network, Arbitrarily chosen j € V

Reg//t, Time average local regret

I I I I I I I I I
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
t, number‘ of user connections processe:

Local regret Reg’t/t Vs. no. user connections t

» Identify attackers in LAN > Reg, /T -0

» KDDCup 99 data set: = Spikes = misclassifications
= VT ~ 5 x 10° data pts. = Recover quickly after mistakes
= p = 41 features = No raw info exchange
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Detecting Attackers in Computer Networks

» Attacker detection protocol on fixed test set of size T = 10*

2 0.5
ﬁ04
;; 0.3
8
H
<02
L: 01
00 10‘00 20‘00 30‘00 40‘00 SObO 60‘00 7600 80‘00 90‘00 10000 g ‘ ‘ ‘ ‘ ‘ ‘ ‘ i ‘
t, number of user connections processed 01000 2000 2Or?gmbiogpuse?oc%%neg?ggspZL?c(losse J000 900010000
(a) Avg. false alarm rate vs. no. of user connections t (b) Avg. error rate vs. no. of user connections t
» ;. False alarm rate > ;¢ error rate
» Friendly users flagged » Undetected attacks
= within [.33,.30] = within [.13,.17]

Alec Koppel Online and Decentralized Statistical Learning 17



Online Learning in Complex Networks

Introduction
Generalized Linear Models
Networked Regret Minimization
Online Learning in Complex Networks
Dictionary Learning
Robot Path-Planning
Decentralized Dynamic Discriminative Dictionaries
Nonparametric Regression

Conclusion

Appendix

Alec Koppel Online and Decentralized Statistical Learning 18



Distributed Learning with Latent Correlation

» Before, we solved the problem
v
min Z Ex,y,[¢(W;,X;,y)] such that w; = w;
i=1
= implicitly assumes nodes seek independent, common params
» If there is latent correlation among variables
= equality constraint will harm estimation accuracy
» Introduce proximity function h(w;, w;)
= couples variables of i and j according to a prior y; on p(w;, w;)

v
min > Ex,y,[6(Wi, X, y7)] such that h(w;,w)) < v;

i=1

= can solve this problem with comparable saddle pt. techniques
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Random Field Estimation

0
» N = 100 grid sensor network -0.5
= deployed in 200 sqg. m. region 1
» Linear estimation w/ corr. obs. 15
= distance corr. p;j = e~ li~/l -
» Constant step-size e = 10727° 02 04 06 0.8
= Prox. func. ||w; — W/||2 < (a) Snapshot of random field
. v 108 : ‘ :
= v; = sample correlation 210
9]
£
» Comparable performance to 3 |
(recursive) Weiner-Hopf estimator T e
. _— . 2
= via proximity constraints 0 —IMNSE
2 — Weiner-Hopf|
3 —Saddle Point
<8 101 |
50 100 150 200

Alec Koppel

t, number of iterations

(b) Objective over iteration t
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Random Field Estimation

0
» N = 100 grid sensor network -0.5
= deployed in 200 sqg. m. region A
» Linear estimation w/ corr. obs. 15
= distance corr. p;j = e~ I/l .
» Constant step-size e = 10727° 02 04 06 0.8
= Prox. func. ||Wi _ W/||2 < Yi (a) Snapshot of random field
. 2
= v; = sample correlation 0
» Comparable performance to

(recursive) Weiner-Hopf estimator
= via proximity constraints

Constraint Violation

6 L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000
t, number of iterations

(b) Constraint Violation over iteration ¢
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Reducing Inference Error Rates

» In distributed convex setting =- we achieve optimum of ERM
= even when data is scattered across a multi-agent network
= mediocre accuracy = complexity of relating x and y

» Need better estimator =- alternative data representations
= Signal encoding = Fourier, wavelets, PCA, or data-driven
= Task-driven: tailor dictionary to inference (Mairal ’12)

Figure: Initialized (left) and learned (right) dictionary for small image patches.
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Dictionary Learning

v

Represent signals x; as combos. of k basis elements {d,}£_,
= learn dictionary D € R™*k from data

= Denote the coding of x; as a; € R¥

Representation loss g(ay, D; x;) = small if Da; and x; close
= Da; is representation of x; w.r.t dictionary D

Formulate the coding problem

v

v

a*(D; x;) ;= argmin g(ca, D; ;) .
apG]Rk

v

Dictionary learning
= seek D such that signals x; well-represented by Da*(D; x;)
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Discriminative Dictionary Learning

Alec Koppel

Tailor dictionary to discriminative modeling task
Use coding a*(D; x;) as representation of signal x;

Decision variable w =- predict the label/vector y; given a*(D; X;).
Loss function ¢(D,w; (X, y:)) = £(a*(D; X;), D, W; (X;, Y1)
= predictive quality of w for var. y; given coding a*(D; x;)

Discriminative dictionary learning

(D*,w*) := argmin Exy [K(D,w; (x,y))}.
DeD,wew

= Learn jointly regression weights w and dictionary D
= Non-convex stochastic program
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Application: Uncertain Robot Path-Planning

v

One role for learning in robotics: learn model uncertainty

v

Simplified physics models used for control due to complexity
= Models are available. Not perfect but not useless either
= Replace mechanical models with learned models

v

Learn mismatch between model and reality when
= This mismatch has variability across different terrains

v

Use sensory input to learn uncertainty in execution of controller
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Formulating Disturbance

v

Consider a discrete nonlinear state-space system of equations

Xir1 = F(X, Uk) + g(ak) = F(Xk, Uk) + 9(u, 2«)

v

X, = state vector, ux = control input, zx =- sensory input
Kinematic model (X, ux) not exact = add mismatch term g(ax)
= Want to learn g(ax) to use as input to robust control block
Measure estimate X, of state x, (with on-board IMU, for instance)

v

v

9(ak—1) = Xk — F(Xk_1,Ux_1) .
Learning g(ax_1) is challenging
= Captures difficult-to-model physics we typically ignore
= Dictionary leaning approach

v
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Dictionary-Based Learning Architecture

Motor Control

=
£
\ 4

Motor Output

| Online Dictionary n

Learning

» Platform’s state x, control u intended by a kinematic planner
= differ from measured ground truth X by disturbance g

» This difference, as well as state, control, and visual features
= Fed into dictionary learning method = disturbance pred. g
= Dictionary is a statistical model using sparse approximation

Alec Koppel
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Parametric representation of disturbance

v

Model disturbance g(a) as Gaussian conditional on features a

g _ 2
Plg(a) | a] = %Lz(a)exp _W

v

Distribution parameterized by unknown mean y(a), var. o2(a)
= which depend on control u, and sensory input z,

v

Realizations of (a, g(a)) available online
Sequentially obtained while exploring feature space

v

v

Utilize to learn parametric representation of the distribution
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» Learn online mean, variance =- introduce regressors wy, W»
= predict first, second-order stats. p(a) and o2(a), given a

2
fla) =wla, 6%@a)=ody+ (wTa+ o)
» Rather than use a directly, use a sparse code o*(D; a)
~ T _x A2 2 T  x 2 2
f(a) =wla(D;a), 5%(a) = o2y + (W27’ (D;a) + o2y )
= Regress on sparse approximation a*(D; a) w.r.t. dictionary D

» Motivation for using sparse code o*(D; a), learning dictionary D:
= g(-) relates robotic sensory perception, unexpected dynamics
= Relationship between (a, g(a)) highly nonlinear
= Estimation accuracy =- boosted via alternative encoding
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Task-Driven Dictionary Learning

v

Dictionary D = {d,}!",, d; € R composed of m basis elements
Estimate a, = Day as linear combo. of dictionary elements
Select coefficients that yield a sparse code (elastic net)

v

v

o*(D;ax) := argmin |lax — Dl + |||y + v|la)2
acRk

v

Jointly learn dictionary and regressors wy and wso

(D*,wi,w3):= argmin Ea)g(a)(—log P[g(a)|a,D, w1,w2]>.

DeD,wq,wy

v

Non-convex but convex w.r.t. D and wy and w», separately
Objective is an expectation over dataset = use stochastic grad.

v
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Learning: SGD + Sparse Coding

» Observe signals z,, use past control u, to compute coding
airza;ggtn(1/2)llak — Dawg[3 + Allewkl1 + vl ez,
= Update dictionary using stoch. grad. step w.r.t. dictionary
Dy 1=Dk — ex (Vb log P[g(ak) |ak, Dk, W1 k, W2 k])

» Update regressors along regressor gradient of loss function

Wi kit = Wik + ek (Vw,logP[g(ak) |ak, Dk, Wik, Wak])
w2,k+1 = w2,k + €k (VW2 |Og P[g(ak) | ag, Dk7w1,k7w2,k]) 5

» Converges to locally optimal dictionary and regressors
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Implementation on a Ground Robot

Garmin GPS

Zigheo

Hokuyolaser scanner

ASUS Xtion PRO
A
Computingpayload W}

MicroStrain IMU
ona vibration isolator

Figure: An iRobot Packbot was used in our experiments. It was additionally
configured with a high-resolution camera.

» We consider a differential drive model of a skid-steer robot
Xk cos(fx) —sin(bk) O {Vk}

f(xk,ux) = | Y| = |sin(fx) cos(fx) O
Ok 0 0 1

A(9)
» Disturbance = commanded & actual angular velocity difference

Wk
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Feature Construction

» Visual patch z, = associated with the portion of ground
= Collect images over time horizon of planned robot trajectory

» From the raw patch we construct statistical visual features ¢k
= mean, variance, skewness, kurtosis of RGB color channels
= Textures hy via texton histogram (Leung ’99)

» Concatenated with average linear, angular velocity in [k, k + 1]
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Empirical Performance Comparison

» Model fit of disturbance to task driven dictionary learnt dist.
» Compared to (windowed) recursive average of mean, variance

T
500000 ~——— Dictionary

Average
400000

300000

|
I
I
'
I
| = = = = Windowed Average
i
|
I
|
i
I

200000

—Log-Likelihood

100000

0 | | | |
0 1000 2000 3000 4000 5000

1 Training Images

Figure: Comparison of dictionary learning vs. classical alternatives.

» Superior model fit to Gaussian approximation of disturbance
» Exploits sensory input to identify terrain type
= Pavement or grass essentially. But more granular than that
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Predicting Future Uncertainty

» Test trajectory with predicted & actual disturbance stats. overlaid
» Measured dist. (green) and predicted dist. (blue) for trajectory
= Predicted mean and +2¢ envelope shown

2+

o

Disturbance (rad/s)

Pavement Grass

-2 L L L L L L L L L L L L L L
0 100 200 300 400

Validation Index

» Observations are mostly contained within confidence envelopes

Alec Koppel Online and Decentralized Statistical Learning 37



Future Uncertainty Cones % Penn

» Actual trajectory not contained within cones for initial dictionary
= But contained within cone after dictionary is properly learnt
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Multi-Agent Dictionary Learning

» Dictionary-based estimations better than GLM

= but what if data is scattered across a network?

Incentivize agreement via constraint D; = D;,w; = w; for all j € n;
Decentralized task-driven dictionary learning problem

v

v

v
{Dj, Wi}y = argmin % By, [¢(Drwi (X)) -
D,eD,w,ew i—1

such that D = D/',W,' =W forallj € n;

v

Similar to networked regret minimization
Enforcing agreement constraint would require global coordination
= Define stochastic Lagrangian = distributed alg.

v

v
,CAT(D,W,A,I/) = Z [E(D,',W,'; (xi,hyi,t)ﬂ +tr(ATCDD) + VTCWW
i=1
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Block-Stochastic Saddle Point Method

» Decentralized online dict. learning = Block saddle point alg.
» Stochastic approximation: £(D,w, A, v) = Exy[£+(D,w, A, v)]
= primal stochastic gradient descent

Dt 1 = Dt — ¢/VpLe(Dr, Wi, A, vy)

wt+1 = W; — ETVW[‘/[(DH Wi, A[7 Vt) .

= dual stochastic gradient ascent

A1 = A+ eV ALi(Deit, Wit Ag vy)

Vit = U+ €V Li(Dept, Wepq, A, vy)

» VpLi(D:, Wy, As, ) = Projected stoch. grad. w.rt. D
= gradient approximated with current signals {X; ¢, i} .,
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Local View of Algorithm

v

At agent i, time t, observe (X, Vi),

Compute coding o, ; = argmin, g« g(c, Di i Xj 1)

= In practice chosen as sparse coding via lasso or elastic-net
Update primal variables at agent i

v

v

Ditr1=Djs— Gt(VD,fi(D/,t, Wi (Xt Yit)) + Z(Aij,t - Ajf,t)) )
JEN;
Wit = Wit — € (waf/(Di,r, Wi (X ¥ie) + D (e — Vji,t)) ;
JEN;
Update dual variables at network communication link (/, )

v

Ajir1 =ANji+e (Dig—Djy)

Vijt41 = Vit + € (Wie — Wy ¢)
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Convergence Result

Theorem

Saddle pt. seq. (D¢, w;, Ay, v¢) converges to stationarity in
expectation:

lim B Vo £(D1, wi, Ar, 1)} =0,
tirch[HVwﬁ(DuWn A vy)]] =0

Asymptotic feasibility condition achieved in expectation:

t|—|>nczoE[||VA£(Dt’ Wi, Al‘v VT)”] =0
tino]cE[”qu(thfa At7 UT)”] =0

» Performance guarentee for D4L
=- convergence in non-convex stochastic opt.
= sensitive to data distribution, step-size, network structure
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Image Processing Experiments

» Texture database classification problem =- Brodatz textures
= Insight into dynamic image processing problems
= Toy model of real-time navigability analysis in robotic teams

» Real-time image data = train multi-class logistic reg. weights

» Decentralized dynamic texture classification
= Subset of textures: {grass, bark, straw, herringbone_weave}

Figure: Sample images from Brodatz textures.

Alec Koppel Online and Decentralized Statistical Learning 44



Incomplete Sampling

7 0.95 i j j j j j j " [ Complete
S —Incomplete]

~Complete
—Tncomplet

L L L T L L L L . L L L
00 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000

t, number of iterations

L L L L
0 100 200 300 400 500 6

0
+, number of iterations

Figure: Local loss (left) and classification accuracy (right) versus iteration ¢.

V = 10 node random network, results shown for random j € V
Agents observe random incomplete subsets of feature space
Still learn global information and reach consensus

Moderate classifier performance

= due to small step-size required for convergence

= Small step-sizes required for convergence

vV vyVvVvyy
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Robotic Field Setting

» Each robot in the network sequentially observes images
= partitions them into small patches
= classify patches with multi-class logistic regression.

» Terrain classification has been used as a layer in robust control
= Classes are terrains of varying traversability

» Data from Lejeune Robotics Test Facility = Thanks to ARL!

Figure: Sample image (left) from a N = 3 robot network of Huskies (right).
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Results on Robotic Network

Figure: Local loss (left) and classification accuracy (right) versus iteration t.
V = 3 complete graph w/ complete sampling.

» Main takeaways: training is slow, but convergent
= due to necessity of small step-sizes
= good for centralized learning, slow in distributed case
» Non-convexity makes training/optimization challenging
= nonlinear classifiers + convex training? =- flexible dictionary
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Large-Scale Function Estimation

» Learning nonlinear statistical models =- function estimation
» Want to find * € H to minimize regularized expected risk R(f)

f* = argmin R(f) := argmin Ex y[((f(X), )] + %||f||§_[
feH feH

= Loss ¢ : H x X x Y — R penalize deviations between f(x), y
» Generally intractable = infinite dimensional data-dependent opt.
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Large-Scale Function Estimation

Alec Koppel

v

Learning nonlinear statistical models =- function estimation
Want to find f* € #H to minimize regularized expected risk R(f)

v

f* = argmin R(f) := argmin Ey y[¢(f(X), y)] + %||f||§{
feH feH
= Loss ¢/ : H x X x Y — R penalize deviations between f(x), y
Generally intractable = infinite dimensional data-dependent opt.
Reproducing kernels =- framework to make this task possible!
= H is equipped with unique kernel function, k : X x X — R

v

v

. , A
o= arfgmm]Ex,y[E(Z Wari(Xn, X), Y) 1 5 | > WaWmk (X, Xm) (15
€EH

nez n,meT

= via use of Representer Theorem, dating back to Riesz Thm.
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Nonlinear Inferences: Dictionaries vs. Kernels

v

Kernel methods learn function f(x) = > .7 Wnk(Xn, X)
= comes from Representer Theorem, dating back to Riesz Thm.
= T is a countably infinite indexing set

v

Maintain convexity while learning nonlinear statistical model
= complicated representation: |Z| = co vs. k basis elements
= flexible dictionary, model conditional density of inference

v

Train with functional stochastic gradient descent?

frii1(-) = (1 = ne ) — mel! (Fe(Xe), Vi) s (Xe, -)

Problem: training complexity with SGD is cubic in iteration index
= Sparsify the solution? Need to sparsify training

v
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Online Multi-Class Kernel SVM

» We implement functional generalization of SGD
fivr1 (1) = (1 = e\ — el (Fi(Xe), Yo)R(Xt, )

(fis1, Di1, Weiq) = KOMP(fis1, Dyq, Wi, €r)

= operating in tandem with projection step onto subspaces of H
= subspaces greedily constructed via matching pursuit

2
fry1 = argmin Hf - ((1 —neA)fe — mvff(f,(x,),y;)) HH

feHp, 4

» Proposed work: online training of sparsified kernel classifiers
= Main problem: sparsification bias may ruin stochastic descent
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Online Multi-Class Kernel SVM

» Case where training examples for a fixed class
= drawn from a distinct Gaussian mixture

» 3 Gaussians per mixture, C = 5 classes total for this experiment
= 15 total Gaussians generate data
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Online Multi-Class Kernel SVM

» Case where training examples for a fixed class
= drawn from a distinct Gaussian mixture

» 3 Gaussians per mixture, C = 5 classes total for this experiment
= 15 total Gaussians generate data

-2 0 2

» Grid colors =- decision, bold black dots =- kernel dict. elements
» ~ 97% accuracy
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Conclusion

Ground Truth

Optimal Estimator

Surrogate Estimator | (w*)"x (W) "ee(x,D%) > nWak(Xn,X)

GLMs Dictionaries Kernels
Complexity of model/training difficulty

Increasing accuracy of inference
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Conclusion

v

Can establish strong convergence guarantees for GLMs
= In centralized and distributed online cases
= But we are solving the wrong problem = too far from y*(x)

v

Dictionary methods = richer estimators, nonlinear classifiers
= promising results on robotics application
= non-convexity =- challenge to train in distributed setting

v

Kernel methods allow learning nonlinear classifiers

= preserve convexity, directly model conditional density
= but training has prohibitive complexity in online setting
Proposal: learn kernel classifiers online with low complexity

v

Alec Koppel Online and Decentralized Statistical Learning 57



References

Journals

A. Koppel, F. Jakubeic, and A. Ribeiro, “A saddle point algorithm for networked online convex optimization,” IEEE Trans. Signal
Process., vol.PP, n0.99, June. 2015.

> A Koppel, B. Sadler, and A. Ribeiro, "Proximity without Consensus in Online Multi-Agent Optimization,” in IEEE Trans. Signal
Proc. (submitted), June 2016.

> A Koppel, G. Warnell, E. Stump, and A. Ribeiro, “D4L: Decentralized Dynamic Discriminative Dictionary Learning,” in IEEE Trans.
Signal Info. Process over Networks (submitted)., June. 2016.

Conferences

> A Koppel, F. Jakubeic and A. Ribeiro, “Regret Bounds of a distributed saddle point algorithm,” in Proc. Int. Conf. Accoustics
Speech Signal Process., Brisbane, Australia, Apr 19-24 2015.

> A Koppel, F. Y. Jakubiec, and A. Ribeiro, “A saddle point algorithm for networked online convex optimization.” in 39th Proc. Int.
Conf. Acoust. Speech Signal Process., Florence, Italy, May 4-9 2014, pp. 8292 - 8296.

> A Koppel, B. M. Sadler and A. Ribeiro, "Proximity without consensus in online multi-agent optimization,” in Proc. Int. Conf.
Accoustics Speech Signal Process., Shanghai, China, Mar. 20-25 2016.

P A Koppel, B. M. Sadler, and A. Ribeiro, “Decentralized Online Optimization with Heterogeneous Data Sources”, IEEE Global
Conference on Signal and Information Processing (to appear), Washington, DC, Dec. 7-9, 2016.

> A Koppel, J. Fink, G. Warnell, E. Stump, and A. Ribeiro, “Online Learning for Characterizing Unknown Environments in Ground
Robotic Vehicle Models,” in Proc. Int. Conf. Intelligent Robotics and Systems, Daejeon, Korea, Oct9-Oct14 2016

> A Koppel, G. Warnell, and E. Stump. “Task-Driven Dictionary Learning in Distrubted Online Settings.” in Proc. Asilomar Conf. on
Signals Systems Computers, Pacific Grove, CA, November 8-11 2015.

> A Koppel, G. Warnell, E. Stump, and A. Ribeiro, “D4L: Decentralized Dynamic Discriminative Dictionary Learning,” in Proc. Int.
Conf. Intelligent Robotics and Systems, Hamburg, Germany, Sep 28-Oct2 2015.

Online and Decentralized Statistical Learnir 58




Appendix

Introduction
Generalized Linear Models
Networked Regret Minimization
Online Learning in Complex Networks
Dictionary Learning
Robot Path-Planning
Decentralized Dynamic Discriminative Dictionaries
Nonparametric Regression

Conclusion

Appendix

Alec Koppel Online and Decentralized Statistical Learning 59



DSPA: Technical Assumptions

» The network G is symmetric and connected with diameter D.

» Loss function gradients for any w bounded by constant G, i.e.
[Ver(w)llz < G.
» Losses ¢; +(x) are Lipschitz continuous with modulus K ; < K

[[€7,e(wW) = Lie(W)ll2 < Kit[|w — ]2 < K[w — V]2
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D4L: Technical Assumptions

v

Network G = symmetric and connected with diameter D.

v

Diminishing step-size rules: >~ e; = oo and Y17 €2 < oo

v

Mean and variance conditions of Lagrangian stochastic gradients

E[[|6p.q|| | Fi] < Aet
E[||VoLt(Dt, Xt A, 1) | | Fi] < 0.

v

Feasible dictionary set is those with unit column-norms

D={DecR™k:|dj|| <1,j=1...k}.
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Decentralized Online SVM

v

Instantaneous loss =- hinge loss at current data point
£ra(w) = S w3 + max (0,1~ y,w™xi)

» Reg; measures price of distributed causal classifier training
» Algorithm Formulation

Wit =Pw [W/,t—G(CWi,t — Vi, Xi L (yi, W] Xip < 1)+Z()\f/,r—)\ﬁ,t))}7

jeni

/\ij,t+1 = 'P/\,j {/\,’N +e€ (W,'J — WI'J) } .

» Limit classifier complexity to set W = {w; € RP : ||w;|> < (}
> I(yiwxi < 1) =1ify; wix;; <1,I(y,w'x;; <1) =0else
» Projected Perceptron with dual correction (neighbor info)
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Sparse Multi-class texture classification

Alec Koppel

» Multi-class logistic reg. prob. =- Agent i receives signals Xx; ;
= output a decision variable y;; € {0,1}¢ = C no. of classes
lyitlc = binary indicator of whether signal falls in class c.
Local loss ¢; = negative log-likelihood of prob. model

vy

C
£;(Dj,W;; (0;,y;)) = log (Z eWiT,cai*+Wi°,c>

c=1

C
= 3 (oW o+l ) €W I3
c=1

v

aj = sparse coding via elastic-net min. prob.
T * 0 ., . . .
go(a) = eVie™i tWic is activation function;

= 9c¢(2i)/ > 9o (2i) = prob. z;inclass ¢
= 2; = average of image sub-patches

» Classification decision = maximum likelihood class label
= &= argmax, Ge(2)/ Yo 9o (21);  [Yide = Ofor c # &
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Large-Scale Function Estimation

v

Equip #H with a unique kernel function, k : X x X — R, such that:

(1) (fr(%,)))n = f(x) forallx e X,
(i) H = span{x(x,-)} forallx e X .

v

Property (i) = source of “kernel trick:”

= define nonlinear map ¢(x) = (X, -) of feature vector x

= accessed only via inner products ($(X), (X)) = x(X,X’)
Property (ii) = Representation Thms. from functional analysis

v

v

Kernel examples:
i " — _Ix=x13
= Gaussian/RBF x(x,x') = exp

2¢c?

= polynomial x(x,x') = (x"x' + b)°
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Function Representation

» Consider empirical risk minimization case: sample size N < oo
» Representer Theorem:

f_argmln ZE (Xn), yn) takes the form f(x an K(Xp, X

= X, are feature vectors, and w, is a scalar weight.
= f is a kernel expansion over training set
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Function Representation

» Consider empirical risk minimization case: sample size N < oo
» Representer Theorem:

f* —argmln Zﬂ f(Xn), Yn) takes the form f(x Zw,, #(Xn, X

n 1
= X, are feature vectors, and w, is a scalar weight.

= fis a kernel expansion over training set
» Representer Thm. into ERM = opt. over # reduces to w € RV

N
f* = argmin — ZZ Z Win#(Xm, Xn), ¥n) + || > WaWmk(Xim, Xn) |5,
WERN n,m=1

= argmin — Z (W' kx(Xn), ¥n) + ngKx XW
WERN n—1
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Function Representation

» Consider empirical risk minimization case: sample size N < oo
» Representer Theorem:

= argmln — Zﬁ f(Xn), ¥n) takes the form f(x Z Wy K(Xp, X

= X, are feature vectors, and w,, is a scalar weight.
= fis a kernel expansion over training set

> Example: kernel logistic regression P(y = 0 | x) = 220G

P4

—argmin > llog (1 + exp{(x:)}) -1y = 1)~ Fx)ilya = 0) + 511

feH n:1
1
=argmin & [Iog <1+exp{wT;<;x(x,,)})—]I(y,, = 1)-whkx(xp)I(y, = 0) +;wTKx’xw]

weRN YT
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Function Representation

v

Consider empirical risk minimization case: sample size N < oo
Representer Theorem:

v

= argmln — Zf f(Xn),Yn) takes the form f(x Z Wy K (X, X

= X, are feature vectors, and w,, is a scalar weight.

= fis a kernel expansion over training set

Unfortunately, as sample size N — oo

= kernel matrix [Kx x]m.n := (Xm, X,) becomes infinite too!

= X = [Xy;X2;---] = kernel dictionary

= rx() = [k(X1,-) ... 5(Xn, )] = empirical kernel map

= model order M(= N) — oo = number of dictionary columns
Storage/representation issue = “the curse of kernelization”

v

v
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Kernel Matching Pursuit

» Fix approx. error ¢; H]lbert Space

» Define subspace =
Hp,,, = span{x(dp,-) "”g; /// ~a

» {d,} C {Xy}u<t = model pts. ,/ ft;rl ~ (Dt+lth+1j\>
= subset of past feat. vecs. / YMP el \

» Remove kernel dict. elements I € ‘

|
L

[ o« .
fi+l ~ (D4+J-Wf+|)
/

» Stopping criterion:

||ft+1 - ft+1 ||’H < e stochastic gradient
» New model order: N /
Mip1 < My 41 ) \\ il
fe ~ (D¢, wy) -

M,
HDt+1 aﬂ?”’ i3 )} z+1
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Parsimonious Online Learning with Kernels

» Define un-projected/unsparsified iterate at step t + 1
fror = (1 = n ) — eV el(fi Xe, Y.
= parameterized by dictionary and coefficients
Div1=[Dr, X, Wy = [(1 = med)We, —mel/(Fi(X0), 1)) -

» Our method: (ff+1 s Dt+1 R Wt+1) = KOMP(?pH R ﬁt+1 R W;+1 R 6[)
» This amounts to a certain orthogonal subspace projection

. 2
o= argmin [~ (11— 08— 04000, 0)

= Php,, {(1 — A — ntvfg(ft(xt)J/t)} :

» Recall the Hilbert subspace Hp,,, = span{x(dp, ~)}n"”;+1‘

= d, are model points =- subset of past feature vectors {x,},<¢
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Kernel Orthogonal Matching Pursuit (KOMP)

Require: function f defined by dict. D € RV coeffs. W € RY, approx.

budget e; > 0
Initialize f = 7, dict. D = D (indices Z), model order M = i, coeffs. w = W.
while candidate dictionary is non-empty Z # () do
forj=1,...,Mdo
Find minimal approx. error with dict. element d; removed

=, mn_ )= > wien(di, ) -
end for T keT\{j}
Find dictionary index minimizing approx. error: j* = argmin;. v;
if minimal approximation error exceeds threshold ~;« > €
stop
else
Prune dictionary D < Dz -3, revise T < T\ {j*}
Revise model order M < M — 1; compute w defined by D
w = argmin|[f(-) — w ko ()l

weR!
end

end while B B
return f, D, w of model order M < M such that ||f — f||lx < &
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Online Kernel Multi-Class SVM

» Given feature vectors x with labels y € {1,..., C}

= Classifier = optimize a geometric criterion of separation
» Kernel multi-class SVM = for class c, function f, : X — R.

= Classify x = max class-conditional prob. y = max,- f,/(X).
» Define vectorized function f = [f;, ..., fc] € HC.

= Want to minimize A-regularized multi-class hinge loss

_argmln Zﬁ (Xn), ¥n) JF)\ZHfC’H?-L’

= L(f(x), y) = max(0,1 + f(x) — f,(X)), r = argmax,,_,, fo:(X).
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Online Kernel Multi-Class SVM

» Parameter selection:
= Gaussian kernel with bandwidth 52 = 0.6
= regularizer A = 108, constant learning rate = 6.0
= approximation budget e = Kn%/2
= parsimony constant K = 0.04
= Initialize kernel classifier as null, i.e., fy =0
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