Nonparametric Stochastic Methods for
Statistical Learning and Control

Alec Koppel
University of Pennsylvania, Philadelphia, PA

Phd Committee:
Alejandro Ribeiro (Advisor), Vijay Kumar (Chair),
Brian M. Sadler, Jonathan Fink

Phd Defense
Philadelphia, PA, Jun. 30, 2017

Alec Koppel Nonparametric Stochastic Methods for Statistical Learning and Control 1



Introduction

Introduction

Reproducing Kernels and Nonparametric Estimation

Multi-Agent Statistical Learning with Kernels

From Statistical Learning to Stochastic Control

Conclusion

Alec Koppel Nonparametric Stochastic Methods for Statistical Learning and Control 2



Statistical Learning

» Setting: random pair (x,y) € X x YV = training examples X, y,
» Learn to estimate y, via x, = find a statistical model y, = f(x,)

= predict the price of a commodity (regression)
= identify if a person is present in an image (classification)
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Statistical Learning

v

Setting: random pair (x,y) € X x Y = training examples X,, y»
Learn to estimate y, via x, = find a statistical model y, = f(x,)

v

v

How to quantify merit of j,? Make minimal no. of mistakes:
f* :=argmin Ey y [I{f(x) # y)}]
feF

= Clear merit for choosing estimator ¥, which depends on .#
Z is a class of estimators

v
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Statistical Learning

v

Setting: random pair (x,y) € X x Y = training examples X,, y»
Learn to estimate y, via x, = find a statistical model y, = f(x,)

v

v

Optimizing indicator intractable =- replace by convex ¢(f(x), y)

f* .= argmin Ex y[¢(f(X), y)]
feF

v

Focus on instances w/ streaming data = sample size N infinite
F = balance accuracy f* ~ f*, optimality f; — *, complexity
= Examples: web apps, comms., robotics, smart devices

v

Alec Koppel Nonparametric Stochastic Methods for Statistical Learning and Control 5]



On the Choice of .#

Tractable
Complexity

Dictionaries =~

Optimality Accu racy;‘
in 7
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Generalized Linear Models (GLMs)

» Linear statistical models: y = w’x = param. vector w € .% = RP
= translates to vector-valued stochastic convex opt.
= established multi-agent optimality via classic stoch. approx.
» Proposal E.g.: detect attackers in computer networks w/ SVM
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» Optimality does not automatically translate to statistical accuracy
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Dictionaries

» ¥ = w’a(x, D) extension of GLM w/ learned signal encoding
= replace x w/ coding a(x, D), depends on learned dictionary D
» Actual & predicted robot control uncertainty = closely matches

Disturbance (rad/s)

Pavement Grass

[ — I P T A— — MR
0 100 200 300 400
Validation Index
» Motivated multi-agent extension, convergence tied to stoch. err.
= Optimality elusive due to nonconvexity, “hacking” required
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Kernels & Nonparametrics

>y =f(X) =3 ,cr Wak(Xn,X) = & kernel func., w, are weights
= 7 is infinite indexing set, corresponds to training examples
» Cvx. prob. in infinite space = optimality, intractable complexity

» This work: compressed kernel function representations
= Preview: online multi-class kernel SVM on Gaussian mixtures
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Optimally Compressed Kernelized Estimates

v

Kernel methods: f(X) = > .7 Wak(Xs, X) = via Rep. Thm.
= 7 is infinite indexing set = complicated representation
Maintain convexity, stat. inference via nonlinear interpolator

v

v

Could train with functional stochastic gradient descent

= Could sparsify solution

Problem w/ kernel setting: training complexity = iteration index
= Want to sparsify training = possibly invalid descent directions
This work: convergent online training w/ sparsified kernels

= accurate, convergent, low complexity statistical learning

v

v
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Optimally Compressed Kernelized Estimates

v

Kernel methods: f(X) = > .7 Wak(Xs, X) = via Rep. Thm.
= T is infinite indexing set = complicated representation
Maintain convexity, stat. inference via nonlinear interpolator

v

v

Could train with functional stochastic gradient descent

= Could sparsify solution

Problem w/ kernel setting: training complexity = iteration index
= Want to sparsify training = possibly invalid descent directions
This work: convergent online training w/ sparsified kernels

= accurate, convergent, low complexity statistical learning
Extend to probs. in reinforcement learning (RL) w/ cont. spaces
= used to solve Bellman’s evaluation equation in full generality
= foundation upon which many RL methods are developed

v

v

v
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On the Choice of .#

Tractable
Complexity

Dictionaries =~

Optimality Accu racy;‘
in 7
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On the Choice of .#

Tractable
Complexity

Optimality Accuracy
in # /
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Statistical Learning in Kernel Hilbert Space

» Nonlinear statistical models =- function estimation: find f* ¢ .%#

A
= argmin A(f) := argmin Ex [(((x), )] + 5 I
feF

= expected risk L(f) := Ex y[((f(X),Y)]

» Proposal = % = H, Reproducing kernel Hilbert space (RKHS)
= H is equipped H w/ kernel function, x : X x X — R such that:

(1) (F,k(X, )3 = F(X), (i) H =span{x(x,-)} forallx c X .

» E.g., Gaussian/RBF: x(x,X’) = exp{—(|lx — x||3)/2¢?}
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Function Representation

» Consider expected risk min. = Representer Theorem (Reisz):
f* = argmin Ey y[¢(f(X), )] takes the form f(x) = Z Wy K(Xp, X) .
f n=1

= X, are feature vectors, and w, is a scalar weight.
= fis a kernel expansion over (infinite) training set

» Unfortunately, as sample size N — oo
= kernel matrix [Kx x]m.n := £(Xm, X5) infinite too!
= X = [X1;X2;---] = kernel dictionary
= kx(-) = [k(X1,") ... k(Xn,-)]" = empirical kernel map
= model order M(= N) — co = number of dictionary columns

» We want to learn close approx. to f* with low memory
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Functional Stochastic Gradient Descent

» SGD applied to R(f), given independent training example (x;, Y;):

fipr = (1 =Ny — eVl (F(Xe), vt)
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Functional Stochastic Gradient Descent

» SGD applied to R(f), given independent training example (X, y;):
» Apply chain rule:

OU(fr(Xt), yt) Of(Xt) )
Of(Xt) ot

frior = —mM\)fe — e

» Now, differentiate both sides of reproducing property of kernel:

aft(x,) _ a<ft7 K(Xt, ))>7'l
6f[ 6ft

= K(X[, )
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Functional Stochastic Gradient Descent

v

SGD applied to R(f), given independent training example (X;, Y;):

ft+1 = (1 — nt)\)f[ — ntgl(f(xt)a yt)"{(xt’ )

Newest feature vector x; enters kernel dictionary X;
= with associated weight ¢ (f(X;), y:) := 0(f(Xt), ¥1)/0f(X¢)

v

v

FSGD =- updates on weights, dictionary (Kivinen & Smola '04)
Xevr = [Xe, Xel, Wepr = [(1 = neX)We, —nel' (fe(Xe), ¥o)] 5
= Model order M; = t — 1 grows per step = prohibitively costly

—1
Ll Wk (Xn, X) = W] Kk, (X) .

v

Induction + Rep. Thm. = fi(x) =
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Controlling Model Order

» Define vanilla FSGD iterate at step ¢t + 1
fior = (1 = n\) e — eV el(Fi X, ¥o).

= parameterized by dictionary and coefficients

Di1 = [Dyr, X, Wit = [(1 = neA)We, =0l ((Xe), ¥1)] -

Alec Koppel Nonparametric Stochastic Methods for Statistical Learning and Control



Controlling Model Order

» Propose compressing 7t+1 = replace FSGD w/ projected variant:

2
fr 1 = argmin Hf— ((1 — M)y — nfvfé(f’(x’)’yt))HH

feto,,
= Pp,., [(1 — A — ntvfg(ft(xt)d’t)} :
» Define Hilbert subspace #p,,, = span{x(dp, -)}ﬁ"j{
= d, are model points =- subset of past feature vectors {x,},<;

» Select Hp,,, greedily = matching pursuit (Mallat, '93)
= find dict. pt. w/o which causes minimal Hilbert-norm error
= remove this model pt., repeat while ||f,1 — fip1 % < € true

» Convex methods impractically assume isometry/incoherence
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Selecting Hp,,, via Matching Pursuit

(fi41, Dig1, Wepq) = KOMP(?PH ) I~3t+1 W1, €)

» Fix approx. error ¢;

v Hilbert Space

» Hp,., = span{x(dn, )},

» {d,} C {X,}u<t = model pts. //’"‘_“‘\\\
= subset of past feat. vecs. /le ~ (D1, Wes1)
/ ® o
» Remove model pts. d,, I/ YMP e \\
= until hit nbhd. boundary | ./f”ﬁ ‘|
. . a L
» Stopping criterion:

fl.-H ~ (f)1+1-Wr+|)
/

? — f < e stochastic gradient
[fre1 = feralln < et . ,
N /
» New model order: ® ~ e
\
Mg < My 41 fe ~ (D¢, wy) -

%D:H =] a‘ﬁqﬁ'( ny )}Mﬂ_l
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Parsimonious Online Learning with Kernels

Require: {X:, Y, 71, €t}t=0.1.2,...
initialize f,(-) = 0,Dp = [], wo = [], i.e. initial dict., coeffs. empty
fort=0,1,2,...do
Obtain independent training pair realization (X, y;)
Compute unconstrained functional stochastic gradient step

fit () = (1 = e\ — mel! ((Xe), Ye)R(Xt, -)

Revise dictionary D;;1 = [D;, 4],
Revise weights Wy 1 < [(1 — )Wy, —nel (£(X¢), yt)]
Compute sparse function approximation via KOMP

(fi1, Dot Wes1) = KOMP(fi1, Dyt Wey1, €r)

end for
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Convergence Results for POLK

Theorem L

The POLK sequence (fi+1,D¢i1, Wi 1) = KOMP (fi1, D1, Wi, €),
with regularizer n; < 1/, initialization f, = 0, and diminishing
step-sizes/compression budget

(o) oo

§ 2 2 2
m=00, Ny <0, € =10,

t=1 t=1

achieves null sub-optimality in limit infimum:
Iitm inf R(f) — R(f*)=0 a.s.
— 00

Also, {f;} converges almost surely to the optimizer f* = argmin, R(f):

; _ 2 —
tILrEOHf, 7, =0 a.s.

» Requires approx. budget ¢; = 77 = model grows arbitrarily
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Convergence Results for POLK

Theorem

The POLK sequence (f.1,Dsi1,Wiy1) = KOMP (f4,D¢y1, W i) run
with fy = 0, regularizer \ > 0, constant step-size, compression budget

n=mn, e:K7]3/2:(’)(173/2), n<1/\,

where K > 0 is a positive scaler, converges to a nbhd. w.p.1:

liminf |1, — £l < @(/ﬂ VK2 + AJZ) = 0(/i)  as.
—00

» Bias induced by sparsification asymptotically doesn’t hurt too bad
= even when approx. budget doesn’t go to null
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Convergence Results for POLK

Theorem
The POLK sequence f; with constant step-size ny = n < 1/\ and

approximation budget e = Kn®/? where K > 0 is a scalar, has finite
model order: max M; < M>* < oo

» Model order of limiting function > = lim, f; is always finite
» M> depends on (K/7)/(C)
= KOMP criterion, step-size 7, constant K, Lipschitz mod. of ¢
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Gaussian Mixtures Experiments

» Case where training examples for a fixed class
= drawn from a distinct Gaussian mixture

» 3 Gaussians per mixture, C = 5 classes total for this experiment
= 15 total Gaussians generate data
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Gaussian Mixtures Experiments

» Case where training examples for a fixed class
= drawn from a distinct Gaussian mixture

» 3 Gaussians per mixture, C = 5 classes total for this experiment
= 15 total Gaussians generate data

-2 0 2

» Grid colors =- decision, bold black dots =- kernel dict. elements
» Online multi-class kernel SVM achieves ~ 96% accuracy
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Gaussian Mixtures Experiments

10°

T
——BSGD, M = 16
—POLK, K = 0.04, (M7 = 16)

Regularized Expected Risk R(f;)

I I | i I I I I I
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Training Samples Processed

» Comparison with SVM-only competitor

= fixes model order, not approx. error = setto M = 16
» POLK outperforms in terms of regularized risk
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Gaussian Mixtures Experiments

0.3

0.25
02 i K
0.15 E

[]ﬁ ——BSGD, M =16
0.1F

—POLK, K = 0.04 (My = 16)

Classification Error Rate

0.05F

I I . . I . . f 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Training Samples Processed

» POLK also outperforms in terms of accuracy
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Gaussian Mixtures Experiments

——BSGD, M = 16
— POLK, K = 0.04 (M7 = 16)

NS
[ ——|
I I

Model Order M,
52 o o O
| |

S
T

o

| | I | I I I I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Training Samples Processed

» POLK learns correct model order M+ = 16
= true data domain has 15 modes
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Benchmark Data

—

Brodatz textures MNIST Digits

» Brodatz: classify texture {roof, grass, etc.} (13 classes)
» MNIST Digits: classify if digit is {0, ...,9} (10 total classes)
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Benchmark Data Experiments

——BSGD, M=1171
—— BSGD, M=305

— POLK, K=0.01 (M = 1171)
100 —— POLK, K=0.02 (My = 305) | |

0 ——POLK, K=0.008 (M; = 2326)
10 — POLK, K=0.016 (My = 448)

Risk

Risk

. .2 4 6
Training Samples Processed

KSVM on Brodatz Textures

» Objective is stable on real data

Alec Koppel
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<«10% Training Samples Processed %10°

KLR on MNIST Digits
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Benchmark Data Experiments

0.3 ‘ ‘
—BSGD, M=1171 0.14 —POLK, K=0.008 (M = 2326)]
— BSGD, M=305 — POLK, K=0.016 (M; = 448)
0.25 ——POLK, K=0.01 (Mp = 1171)| |
— POLK, K=0.02 (M = 305)

Test-Set Error

Test-Set Error

0 2 4 6 8 05 ., 1. 15 2
Training Samples Processed <10 Training Samples Processed <10°
KSVM on Brodatz Textures KLR on MNIST Digits

» Stability over descriptive function class .% = H
= translates to small error rates: 4.53%, 2.68%
= better than SVM-only competitor
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Benchmark Data Experiments

3000 : ‘ ‘
—— POLK, K=0.008 (M = 2326)
1500 | 2500 —— POLK, K=0.016 (M = 448)
o —
_GC: _ﬂé 2000
O 1000 10 1500
E} ———BSGD, M=1171 g
—BSGD, M=305
3 T POLK Kotn (i - || 1000
= 500 /'F\\\:POLK‘ K=0.02 (My — 305) 1 =
500 P\
0 : : : 0 : : : :
0 .2 4 6 8 0 0.5 1 1.5 2
Training Samples Processed 4 Training Samples Processed ., 5
x10 8 x10
KSVM on Brodatz Textures KLR on MNIST Digits

» POLK J/earns model order needed for stability
= driven by complexity of class-conditional probability density
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Multi-Agent Statistical Learning with Kernels
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» Network G = (V,€)

» Node / observes {X;, ¥i}t>0
= wants to learn estimate j; ;
= as good as one w/ global info

» Decentralized nonparametric stochastic program:

f* = argmin ZEX,yy,[é,-(l‘,-(x,-),y,-)] sit. fi=fiforall (i,j)e&.
{fl'}fGVCH i€y

» Penalty functional ¢-(f) = each node applies POLK to ; ¢(f;)

Vo) =3 ([Bny [ 00, 30)] S 1R S {150%) — X))

iey jen;
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Results for KSVM on Gaussian Mixtures

» Penalty initialized ¢ = 0.01, doubles every two hundred samples

Py W T
; 5
5105 320/T\
i 15
p z
10" <10
; "5

Lo e Y P I A N N T N I O A T S S S S
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 10‘0 500 1000 1500 2000 2500 3000 3500 4000 4500 500C 0500 1000 1500 2000 2500 3000 3500 4000 4500 5000

£, number of samples processed , mumber of samples processed 1, number of samples processed
Global Objective Network Disagreement Model Order
> Network Disagreementis 3=, ¢ [|fit — f.tl/%

» POLK in multi-agent setting = 95.7% multi-class accuracy
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From Statistical Learning to Stochastic Control
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Markov Decision Processes

» Agent wants to augment behavior via temporal incentives
= starting at state x; € X C RP, selects action a; € A C R?
= choosing a; influences next state x;,1 ~ P(- | X¢, at)
= denote X;,1 as y; for disambiguation.
» When transitioning to state y;, a reward r(x;, a;, y;) is assigned
= e.g., portfolio revenue, platform stability

%
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Markov Decision Processes

» Agent wants to augment behavior via temporal incentives
= starting at state x; € X C RP, selects action a; € A C R?
= choosing a; influences next state x;,1 ~ P( |xt, a;)
= denote X;, 1 as y; for disambiguation.

» When transitioning to state y;, a reward r(x;,a;,y;) is assigned

» This setting is defined by a Markov Decision Process
= a quintuple (X, A,P, r,~)
= ris the reward function, v € (0, 1) is discount factor
= continuous state & action spaces
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The Value Function

» General goal in an MDP = choose actions {a;};°,
= maximize reward accumulation when starting at xo = x

oo

V(x, {ai}iZ) = EV{ZW(Xu anyt) [ Xo = X, {at}?io]
t=0

= value function; E taken w.r.t. Markov transition density

» Determining sequence {a;} for continuous X, A
= has been open for decades (Bellman in 1950s)

» Step towards solution = evaluate action seq.=- policy eval.
= foundation of determining optimal action sequence
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Policy Evaluation and Bellman’s Equation

» Control decisions a; = chosen according to a fixed distribution
= distribution is called a policy 7 : X — p(.A)

» Seek to compute value of a policy starting from state x,
= quantified by discounted expected sum of rewards

V() = By [ 30 1'% a0 ye) [ xo = x, {ar = m(x0)} % |-
t=0
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Policy Evaluation and Bellman’s Equation

» Decomposing value function into its first & subsequent terms
= yields the Bellman evaluation equation (Bellman 1957)

VT ( /[I’XTI’ x),y) +~V7(y)|P(dy|x,7(x)) forallx € X,

» Bellman eval. eqn. defines Bellman operator #7 : B(X) — B(X)

(#7V)(00 = [ [l m(x). )+ VTP [ x.7(x)) forallxe .

» V7(x) is fixed pt. of ™: (%™ V7)(x) = V7 (x) (Bertsekas, '78)
= our goal is to find V™ = solve fixed point prob.
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Compositional Stochastic Programming

» Reformulate Bellman eval. eqn. as comp. stochastic prog.
= Subtract V™ (x) from both sides, pull inside expectation:

0 = Ey[r(x,7(X),y) + YV (y) — V™ (x) |x,7(x)] forallxe X .
» Square above eqn., then integrate out x, policy 7(x):

VT = argmin By 0 { 3 (Bylr(x,7(6),y) + 3 V() - V()| x. (]}
VEB(X)
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Compositional Stochastic Programming

» Reformulate Bellman eval. eqn. as comp. stochastic prog.
= Subtract V™ (x) from both sides, pull inside expectation:

0 = Ey[r(x,7(X),y) + yV7(y) — V™ (x) | x,7(x)] forallxe X .
» Square above eqn., then integrate out x, policy 7(x):

V™ = argmin By o { S(Ey[r(x 7(x),¥) +7V(y) - VX)X, 7012}
VEB(X)

» Can’t search over B(X) = Hypothesize B(X) ~ H, a RKHS

= Unrestrictive for universal kernel (Micchelli '06), (Gaussian)

V* =argminEy o { g (By[r(x. 7). y) + V(Y) VX)X, 70012} + 1 VIE,
Ver

= Define J(V)=L(V)+()/2)||V|3,, L(V) is compositional term
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Stochastic Gradient Bias Problem

» Differentiate L(V) w.r.t. V:

\Y VL( V) :]EX,W(X){Eyhh"(ya')f h(X) ‘X, ﬂ(x)}Ey[r(x’ 7T(X), y) +7V(y)_ V(X) ‘X,?T(X)}}

= derivative inside E + chain rule + reproducing property

» Stochastic descent in H requires stoch. estimate of above grad.
Vvd(V, 0%, m(x),y) = [va(Y. ) — s(x,)][r(x, 7(X),y) + 7 V(y) = V(X)] + AV

=0 :=r(x,7(x),y)+vV(y)— V(x) = temporal difference
» Stoch. grad. biased w.r.t. VyJ(V) due to correlated terms
» Coupled descent: estimate both terms in product-of-expectations
» Construct total mean of [yx(y, ) — k(x,-)]? = infinite complexity
= Build up expectation of scalar temporal difference §
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Functional Stochastic Quasi-Gradient Method

» Define a scalar fixed pt. recursion z to estimate average TD ¢
or = r(Xe, 7(Xe), Ye) + YVi(ye) = Vi(Xe) s Ze1 = (1 = B) 2t + By
= §; = temporal difference; ; € (0,1) = step-size.

» Stoch. descent step: replace 1st term in expectation w/ estimate

= [vr(y1, 1) — k(X¢, -)], evaluated at triple (X¢, m(X¢), Yt)
= replace ¢; by z;.1 = stoch. quasi-gradient (Ermoliev ’83)

\A/t+1 =(1-a) Vt — at(vE(Yt, ) — K(Xt, -)) Zt1

= «y is a second step-size
» Extends gradient temporal diff. (Sutton ’09) to infinite MDPs
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RKHS Parameterization

» If Vo =0 € H, inductively applying Representer Thm. yields

2(t—1)
Vi(x) = ) Wk (Vi X) = W] ki, (X) .

n=1
= define v, = x,, for neven, v, =y, for n odd
W; = [W1 T W2([71)] € RZU71) )

X: =[X1,¥1,.- -, X¢—1,Yi-1] € RP*2(t=1)

» Kernel expansion + together with FSQG =- parametric updates:
Xep1 = [Xe, Xe,¥ils Wi = [(1 — )Wy, iZirr, —ayZiga]

» Of course, same complexity issue as FSGD in RKHS: M; = O(t)
= but can solve this w/ sparse projections of POLK!
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Parsimonious Kernel Grad. Temporal Difference #FPenn

Require: {X;, 7(X;), Y1, at, B, €t}t=012,...
initialize Vo(:)=0,Dg=[|,Wo=1[,20=0
fort=0,1,2,...do
Obtain trajectory realization (X;, 7(X;),Y:)
Compute temporal difference and update auxiliary sequence z;

Ot = r(Xe, m(Xe), Yt) + v Ve(ye) — Vi(Xe) ,  Zep1 = (1 — Br) 2t + Bidy
Compute functional stochastic quasi-gradient step
Vt+1 ()=0- at>\)\7t(') — ar(vE(Yts ) — K(Xt, ) Zt41

Revise dictionary D;.1 = [Dy, X; , Y4,
and WelghtS \TV{_H = [(1 — Oq)\)Wt, atZiyq, —Oq’)/Zt_H]

PrOJGCt function ( Vt+1 R Dt+1 , Wiiq ) = KOMP( ‘7[_;,_1 R f)t+1 R Wt+1 R E[)
end for
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Convergence of PKGTD (“Pike”)

Theorem
PKGTD sequences {z;, V;} w/ regularizer A > 0, step-sizes satisfying:

S ) S a2

2 | 2 t 2
g ap = 00, E Bt =00, E of+ 0+ 5 <o, =05
t=1 t=1 t=1 B

converges: V; — V* defined w.p. 1, achieving RKHS Bellman fixed pt.
» Generally, step-sizes have to satisfy: a; = O(t7P=), 8y = O(tP#),

= Pa€(3/4,1),ps € (1/2,2p,—1).

» Increase V; accuracy w.r.t. B™ fixed pt. = reduce regularizer A
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Convergence of PKGTD (“Pike”)

Theorem
When PKGTD is run w/ constant learning rates oy = o and 8y = 3,
compression budget ¢; = € and large enough regularizer, i.e.

0<5<1,a:5,e:0a2,>\:Gf,%+A0

where C > 0 is a scalar, 0 < Mg < 1. Then the sub-optimality
| Vi — V*||2, converges in mean to nbhd.:

imsupE[| Vi~ V*|3, = O (a+a? +a®) .
t—o0

» Larger step-sizes require 0 < 8 < 1 but arbitrary o > 0

limsup E|| V;— V|12 o( 2 g2y O {1+ 2+O‘+O‘2]>
- = ! — "+ =+ =) .
t—oo ! " B B ﬂZ

= dominated by ratios o/ and a?//3?
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Convergence of PKGTD (“Pike”)

Corollary

The PKGTD sequence V; run with constant step-sizes oy = « and

Bt = B € (0,1), compression budget ¢; = ¢ = Ca?, and regularizer
A= (a/B)GE + Ao = O(aB™" + 1) has finite model order for all t, i.e.,
M; < M> < o for some M=, as does its limit V>° = lim; V;.
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The Mountain Car Problem

v

Mountain Car (Sutton, '98): agent at bottom of valley

= attempts to climb up to top of mountain side

= actions A = {reverse, coast, forward}

= continuous state: scalar position & velocity: X = R?.
Reward function r(x;,a;, y:) is —1

= unless y; is goal state at mountain top, in which case it's 0

v

v

Benchmark policy =- trust region policy opt. (Schulman ’'15)
Training set of states & rewards = run policy for 5000 steps
Ground truth via “Monte Carlo:” generate 10000 step trajectory
= sample 2000 states: from each, apply policy until termination
= use observed discounted return as ¥, (x).

v

v
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Mountain Car Value Function

== GPTD === RBF-25 === RBF-49 == PKGTD
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Model Size

0 2000 4000

Steps Steps
» Percentage Error(V)=(1/2000) >-2%%°|(V(x,)— V- (%)) /Vx (X;)|
» PKGTD w/ Gaussian kernel to alternatives:
= Gaussian process temporal difference (GPTD) (Engel '03)
= Gradient TD (GTD) (Sutton '09) w/ Gaussian features.
» PKGTD = lowest percentage error and memory
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Mountain Car Value Function

Velocity

Alec Koppel
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°° o
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Il

—0.06

-1 -0.5 0 0.5

Position

Contour plot of value function, bold dots =- kernel dict. elements
= plateau at mountain top is goal = has highest value of null

» Value function tells us value we obtain in any state

= and where in the state space is good for achieving goal
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Conclusion

v

Greedily compressed RKHS-valued stochastic approx. algs.
= allow us to stably reduce memory of kernelized regressors

v

Accurate, stable, low complexity stat. learning w/ streaming data
= Extendable to multi-agent networks using dist. opt. methods

v

Policy eval. in infinite MDPs = RKHS-valued comp. stoch. prog.
= solved with sparse projected stochastic quasi-gradient
= favorable trade-off in memory vs. accuracy

v

Compressed kernels = stable, low-memory, highly accurate
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Future Directions

Near Term:
» General compositional stochastic prog. in RKHS
= minimizing estimator variance, Bellman optimality eqn.

» Adaptive kernels = Optimize kernel parameters & model points
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Future Directions

Near Term:
» General compositional stochastic prog. in RKHS
= minimizing estimator variance, Bellman optimality eqn.

» Adaptive kernels = Optimize kernel parameters & model points

Longer Term:
» Exact decentralized statistical learning via primal-dual method
= requires Rep. Thm. for stoch. saddle pt. prob. in RKHS

» Multi-scale kernels = composition/linear combo of kernels
= benefits of multi-layer networks + stability theory in RKHS

» Reinforcement learning = POLK for policy search & actor-critic
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