

Nonparametric Stochastic Methods for Statistical Learning and Control

Alec Koppel University of Pennsylvania, Philadelphia, PA

Phd Committee: Alejandro Ribeiro (Advisor), Vijay Kumar (Chair), Brian M. Sadler, Jonathan Fink

Phd Defense

Philadelphia, PA, Jun. 30, 2017

Introduction

Introduction

Reproducing Kernels and Nonparametric Estimation

Multi-Agent Statistical Learning with Kernels

From Statistical Learning to Stochastic Control

Conclusion

Statistical Learning

- ▶ Setting: random pair $(\mathbf{x}, \mathbf{y}) \in \mathcal{X} \times \mathcal{Y} \Rightarrow$ training examples \mathbf{x}_n, y_n
- ▶ Learn to estimate y_n via $\mathbf{x}_n \Rightarrow$ find a statistical model $\hat{y}_n = f(\mathbf{x}_n)$
 - ⇒ predict the price of a commodity (regression)
 - ⇒ identify if a person is present in an image (classification)

Statistical Learning

- ▶ Setting: random pair $(\mathbf{x}, \mathbf{y}) \in \mathcal{X} \times \mathcal{Y} \Rightarrow$ training examples \mathbf{x}_n, y_n
- ▶ Learn to estimate y_n via $\mathbf{x}_n \Rightarrow$ find a statistical model $\hat{y}_n = f(\mathbf{x}_n)$
- ▶ How to quantify merit of \hat{y}_n ? Make minimal no. of mistakes:

$$f^{\star} := \operatorname*{argmin}_{f \in \mathscr{F}} \mathbb{E}_{\mathbf{x}, \mathbf{y}} [\mathbb{I}\{f(\mathbf{x}) \neq \mathbf{y})\}]$$

- \Rightarrow Clear merit for choosing estimator $\hat{\mathbf{y}}$, which depends on \mathscr{F}
- F is a class of estimators

Statistical Learning

- ▶ Setting: random pair $(\mathbf{x}, \mathbf{y}) \in \mathcal{X} \times \mathcal{Y} \Rightarrow$ training examples \mathbf{x}_n, y_n
- ▶ Learn to estimate y_n via $\mathbf{x}_n \Rightarrow$ find a statistical model $\hat{y}_n = f(\mathbf{x}_n)$
- ▶ Optimizing indicator intractable \Rightarrow replace by convex $\ell(f(\mathbf{x}), y)$

$$f^* := \underset{f \in \mathscr{F}}{\operatorname{argmin}} \mathbb{E}_{\mathbf{x}, \mathbf{y}}[\ell(f(\mathbf{x}), \mathbf{y})] = \frac{1}{N} \sum_{n=1}^{N} \ell(f(\mathbf{x}_n), \mathbf{y}_n)$$

- Focus on instances w/ streaming data ⇒ sample size N infinite
- ▶ \mathscr{F} \Rightarrow balance accuracy $f^* \approx f^*$, optimality $f_t \to f^*$, complexity
 - ⇒ Examples: web apps, comms., robotics, smart devices

On the Choice of F

Generalized Linear Models (GLMs)

- ▶ Linear statistical models: $\hat{\mathbf{y}} = \mathbf{w}^T \mathbf{x} \Rightarrow \text{param. vector } \mathbf{w} \in \mathscr{F} = \mathbb{R}^p$
 - ⇒ translates to vector-valued stochastic **convex** opt.
 - ⇒ established multi-agent optimality via classic stoch. approx.
- Proposal E.g.: detect attackers in computer networks w/ SVM

(a) Avg. false alarm rate vs. no. of user connections t

(b) Avg. error rate vs. no. of user connections t

Optimality does not automatically translate to statistical accuracy

Dictionaries

- $\hat{\mathbf{y}} = \mathbf{w}^T \alpha(\mathbf{x}, \mathbf{D})$ extension of GLM w/ learned signal encoding \Rightarrow replace \mathbf{x} w/ coding $\alpha(\mathbf{x}, \mathbf{D})$, depends on learned dictionary \mathbf{D}
- ▶ Actual & predicted robot control uncertainty ⇒ closely matches

- Motivated multi-agent extension, convergence tied to stoch. err.
 - ⇒ Optimality elusive due to **nonconvexity**, "hacking" required

Kernels & Nonparametrics

- $\hat{\mathbf{y}} = f(\mathbf{x}) = \sum_{n \in \mathcal{I}} w_n \kappa(\mathbf{x}_n, \mathbf{x}) \Rightarrow \kappa$ kernel func., w_n are weights $\Rightarrow \mathcal{I}$ is infinite indexing set, corresponds to training examples
- ► Cvx. prob. in infinite space ⇒ optimality, intractable complexity

- ► This work: compressed kernel function representations
 - ⇒ Preview: online multi-class kernel SVM on Gaussian mixtures

Optimally Compressed Kernelized Estimates

- ▶ Kernel methods: $f(\mathbf{x}) = \sum_{n \in \mathcal{I}} w_n \kappa(\mathbf{x}_n, \mathbf{x}) \Rightarrow \text{via Rep. Thm.}$
 - $\Rightarrow \mathcal{I}$ is infinite indexing set \Rightarrow complicated representation
- Maintain convexity, stat. inference via nonlinear interpolator
- Could train with functional stochastic gradient descent
 - ⇒ Could sparsify solution
- ► Problem w/ kernel setting: training complexity ≈ iteration index
 - ⇒ Want to sparsify training ⇒ possibly invalid descent directions
- ► This work: convergent online training w/ sparsified kernels
 - ⇒ accurate, convergent, low complexity statistical learning

Optimally Compressed Kernelized Estimates

- ► Kernel methods: $f(\mathbf{x}) = \sum_{n \in \mathcal{T}} w_n \kappa(\mathbf{x}_n, \mathbf{x}) \Rightarrow \text{via Rep. Thm.}$
 - $\Rightarrow \mathcal{I}$ is infinite indexing set \Rightarrow complicated representation
- Maintain convexity, stat. inference via nonlinear interpolator
- Could train with functional stochastic gradient descent
 - ⇒ Could sparsify solution
- ▶ Problem w/ kernel setting: training complexity ≈ iteration index
 - ⇒ Want to sparsify training ⇒ possibly invalid descent directions
- ► This work: convergent online training w/ sparsified kernels
 - ⇒ accurate, convergent, low complexity statistical learning
- ► Extend to probs. in reinforcement learning (RL) w/ cont. spaces
 - ⇒ used to solve Bellman's evaluation equation in full generality
 - ⇒ foundation upon which many RL methods are developed

On the Choice of F

On the Choice of F

Kernels and Nonparametric Estimation

Introduction

Reproducing Kernels and Nonparametric Estimation

Multi-Agent Statistical Learning with Kernels

From Statistical Learning to Stochastic Control

Conclusion

Statistical Learning in Kernel Hilbert Space

▶ Nonlinear statistical models \Rightarrow function estimation: find $f^* \in \mathscr{F}$

$$f^* = \operatorname*{argmin}_{f \in \mathscr{F}} R(f) := \operatorname*{argmin}_{f \in \mathscr{F}} \mathbb{E}_{\mathbf{x}, \mathbf{y}}[\ell(f(\mathbf{x}), y)] + \frac{\lambda}{2} \|f\|_{\mathcal{H}}^2$$

- \Rightarrow expected risk $L(f) := \mathbb{E}_{\mathbf{x},\mathbf{y}}[\ell(f(\mathbf{x}),\mathbf{y})]$
- ▶ Proposal $\Rightarrow \mathscr{F} = \mathcal{H}$, Reproducing kernel Hilbert space (RKHS)
 - $\Rightarrow \mathcal{H} \text{ is equipped } \mathcal{H} \text{ w/ kernel function, } \kappa: \mathcal{X} \times \mathcal{X} \to \mathbb{R} \text{ such that:}$

$$(i) \langle f, \kappa(\mathbf{x}, \cdot) \rangle_{\mathcal{H}} = f(\mathbf{x}) , \quad (ii) \mathcal{H} = \operatorname{span} \{ \kappa(\mathbf{x}, \cdot) \} \quad \text{for all } \mathbf{x} \in \mathcal{X} .$$

► E.g., Gaussian/RBF: $\kappa(\mathbf{x}, \mathbf{x}') = \exp\{-(\|\mathbf{x} - \mathbf{x}'\|_2^2)/2c^2\}$

Function Representation

► Consider expected risk min. ⇒ Representer Theorem (Reisz):

$$f^* = \underset{f}{\operatorname{argmin}} \mathbb{E}_{\mathbf{x},\mathbf{y}}[\ell(f(\mathbf{x}),\mathbf{y})] \text{ takes the form } f(\mathbf{x}) = \sum_{n=1}^{\infty} w_n \ \kappa(\mathbf{x}_n,\mathbf{x}) \ .$$

- \Rightarrow **x**_n are feature vectors, and w_n is a scalar weight.
- \Rightarrow f is a kernel expansion over (infinite) training set
- ▶ Unfortunately, as sample size $N \to \infty$
 - \Rightarrow kernel matrix $[\mathbf{K}_{\mathbf{X},\mathbf{X}}]_{m,n} := \kappa(\mathbf{x}_m,\mathbf{x}_n)$ infinite too!
 - \Rightarrow **X** = [**x**₁; **x**₂; ···] \Rightarrow kernel dictionary
 - $\Rightarrow \kappa_{\mathbf{X}}(\cdot) = [\kappa(\mathbf{X}_1, \cdot) \dots \kappa(\mathbf{X}_N, \cdot)]^T \Rightarrow \text{empirical kernel map}$
 - \Rightarrow model order $M(=N) \to \infty \Rightarrow$ number of dictionary columns
- ▶ We want to learn close approx. to f* with low memory

Functional Stochastic Gradient Descent

▶ SGD applied to R(f), given independent training example $(\mathbf{x}_t, \mathbf{y}_t)$:

$$f_{t+1} = (1 - \eta_t \lambda) f_t - \eta_t \nabla_f \ell(f_t(\mathbf{x}_t), y_t)$$

Functional Stochastic Gradient Descent

- ▶ SGD applied to R(f), given independent training example ($\mathbf{x}_t, \mathbf{y}_t$):
- Apply chain rule:

$$f_{t+1} = (1 - \eta_t \lambda) f_t - \eta_t \frac{\partial \ell(f_t(\mathbf{x}_t), y_t)}{\partial f_t(\mathbf{x}_t)} \frac{\partial f_t(\mathbf{x}_t)}{\partial f_t} (\cdot)$$

Now, differentiate both sides of reproducing property of kernel:

$$\frac{\partial f_t(\mathbf{x}_t)}{\partial f_t} = \frac{\partial \langle f_t, \kappa(\mathbf{x}_t, \cdot)) \rangle_{\mathcal{H}}}{\partial f_t} = \kappa(\mathbf{x}_t, \cdot)$$

Functional Stochastic Gradient Descent

▶ SGD applied to R(f), given independent training example $(\mathbf{x}_t, \mathbf{y}_t)$:

$$f_{t+1} = (1 - \eta_t \lambda) f_t - \eta_t \ell'(f(\mathbf{x}_t), y_t) \kappa(\mathbf{x}_t, \cdot)$$

- Newest feature vector \mathbf{x}_t enters kernel dictionary \mathbf{X}_t \Rightarrow with associated weight $\ell'(f(\mathbf{x}_t), y_t) := \partial \ell(f_t(\mathbf{x}_t), y_t) / \partial f_t(\mathbf{x}_t)$
- $\Rightarrow \text{ with associated weight } v((\mathbf{x}_l), \mathbf{y}_l) := ov(\eta(\mathbf{x}_l), \mathbf{y}_l)/o\eta(\mathbf{x}_l)$
- ► FSGD ⇒ updates on weights, dictionary (Kivinen & Smola '04)

$$\mathbf{X}_{t+1} = [\mathbf{X}_t, \ \mathbf{x}_t], \ \mathbf{w}_{t+1} = [(1 - \eta_t \lambda) \mathbf{w}_t, \ -\eta_t \ell'(f_t(\mathbf{x}_t), y_t)],$$

- \Rightarrow Model order $M_t = t 1$ grows per step \Rightarrow prohibitively costly
- ▶ Induction + Rep. Thm. $\Rightarrow f_t(\mathbf{x}) = \sum_{n=1}^{t-1} w_n \kappa(\mathbf{x}_n, \mathbf{x}) = \mathbf{w}_t^T \kappa_{\mathbf{X}_t}(\mathbf{x})$.

Controlling Model Order

Define vanilla FSGD iterate at step t + 1

$$\tilde{f}_{t+1} = (1 - \eta_t \lambda) f_t - \eta_t \nabla_f \ell(f_t; \mathbf{x}_t, \mathbf{y}_t).$$

⇒ parameterized by dictionary and coefficients

$$\tilde{\mathbf{D}}_{t+1} = [\mathbf{D}_t, \mathbf{x}_t], \qquad \tilde{\mathbf{w}}_{t+1} = [(1 - \eta_t \lambda) \mathbf{w}_t, -\eta_t \ell'(f_t(\mathbf{x}_t), y_t)].$$

Controlling Model Order

▶ Propose compressing \tilde{t}_{t+1} ⇒ replace FSGD w/ projected variant:

$$f_{t+1} = \underset{f \in \mathcal{H}_{\mathbf{D}_{t+1}}}{\operatorname{argmin}} \left\| f - \left((1 - \eta_t \lambda) f_t - \eta_t \nabla_f \ell(f_t(\mathbf{x}_t), y_t) \right) \right\|_{\mathcal{H}}^2$$
$$:= \mathcal{P}_{\mathcal{H}_{\mathbf{D}_{t+1}}} \left[(1 - \eta_t \lambda) f_t - \eta_t \nabla_f \ell(f_t(\mathbf{x}_t), y_t) \right].$$

- ▶ Define Hilbert subspace $\mathcal{H}_{\mathbf{D}_{t+1}} = \operatorname{span}\{\kappa(\mathbf{d}_n, \cdot)\}_{n=1}^{M_{t+1}}$ ⇒ \mathbf{d}_n are model points ⇒ subset of past feature vectors $\{\mathbf{x}_u\}_{u \leq t}$
- ▶ Select $\mathcal{H}_{\mathbf{D}_{t+1}}$ greedily \Rightarrow matching pursuit (Mallat, '93) \Rightarrow find dict. pt. w/o which causes minimal Hilbert-norm error \Rightarrow remove this model pt., repeat while $\|\tilde{f}_{t+1} f_{t+1}\|_{\mathcal{H}} \leq \epsilon_t$ true
- Convex methods impractically assume isometry/incoherence

Selecting $\mathcal{H}_{\mathbf{D}_{t+1}}$ via Matching Pursuit

$$(f_{t+1}, \mathbf{D}_{t+1}, \mathbf{w}_{t+1}) = \mathsf{KOMP}(\tilde{f}_{t+1}, \tilde{\mathbf{D}}_{t+1}, \tilde{\mathbf{w}}_{t+1}, \epsilon_t)$$

- Fix approx. error ϵ_t
- $\blacktriangleright \mathcal{H}_{\mathbf{D}_{t+1}} = \operatorname{span}\{\kappa(\mathbf{d}_n, \cdot)\}_{n=1}^{M_{t+1}}$
- ▶ $\{\mathbf{d}_n\} \subset \{\mathbf{x}_u\}_{u \le t} \Rightarrow \text{model pts.}$ $\Rightarrow \text{subset of past feat. vecs.}$
- ▶ Remove model pts. **d**_n⇒ until hit nbhd. boundary
- ► Stopping criterion: $\|\tilde{f}_{t+1} f_{t+1}\|_{\mathcal{H}} \le \epsilon_t$
- New model order: $M_{t+1} < M_t + 1$

Hilbert Space

Parsimonious Online Learning with Kernels

Require: $\{\mathbf{x}_t, \mathbf{y}_t, \eta_t, \epsilon_t\}_{t=0,1,2,...}$ initialize $f_0(\cdot) = 0$, $\mathbf{D}_0 = []$, w₀ = [], i.e. initial dict., coeffs. empty for $t = 0, 1, 2, \ldots$ do

Obtain independent training pair realization (\mathbf{x}_t, y_t) Compute unconstrained functional stochastic gradient step

$$\tilde{f}_{t+1}(\cdot) = (1 - \eta_t \lambda) f_t - \eta_t \ell'(f_t(\mathbf{x}_t), \mathbf{y}_t) \kappa(\mathbf{x}_t, \cdot)$$

Revise dictionary $\tilde{\mathbf{D}}_{t+1} = [\mathbf{D}_t, \mathbf{x}_t],$ Revise weights $\tilde{\mathbf{w}}_{t+1} \leftarrow [(1 - \eta_t \lambda) \mathbf{w}_t, -\eta_t \ell'(f_t(\mathbf{x}_t), y_t)]$ Compute sparse function approximation via KOMP

$$(f_{t+1}, \mathbf{D}_{t+1}, \mathbf{w}_{t+1}) = \mathsf{KOMP}(\tilde{f}_{t+1}, \tilde{\mathbf{D}}_{t+1}, \tilde{\mathbf{w}}_{t+1}, \epsilon_t)$$

end for

Convergence Results for POLK

Theorem

The POLK sequence $(f_{t+1}, \mathbf{D}_{t+1}, \mathbf{w}_{t+1}) = \mathbf{KOMP}(\tilde{f}_{t+1}, \tilde{\mathbf{D}}_{t+1}, \tilde{\mathbf{w}}_{t+1}, \epsilon_t)$, with regularizer $\eta_t < 1/\lambda$, initialization $f_0 = 0$, and diminishing step-sizes/compression budget

$$\sum_{t=1}^{\infty} \eta_t = \infty \; , \quad \sum_{t=1}^{\infty} \eta_t^2 < \infty \; , \quad \epsilon_t = \eta_t^2 \; ,$$

achieves null sub-optimality in limit infimum:

$$\liminf_{t\to\infty}R(f_t)-R(f^*)=0 \qquad a.s.$$

Also, $\{f_t\}$ converges almost surely to the optimizer $f^* = \operatorname{argmin}_f R(f)$:

$$\lim_{t\to\infty}\|f_t-f^*\|_{\mathcal{H}}^2=0 \qquad a.s$$

► Requires approx. budget $\epsilon_t = \eta_t^2 \Rightarrow$ model grows arbitrarily

Convergence Results for POLK

Theorem

The POLK sequence $(f_{t+1}, \mathbf{D}_{t+1}, \mathbf{w}_{t+1}) = \mathbf{KOMP}(\tilde{f}_{t+1}, \tilde{\mathbf{D}}_{t+1}, \tilde{\mathbf{w}}_{t+1})$ run with $f_0 = 0$, regularizer $\lambda > 0$, constant step-size, compression budget

$$\eta_t = \eta$$
, $\epsilon = K \eta^{3/2} = \mathcal{O}(\eta^{3/2})$, $\eta < 1/\lambda$,

where K > 0 is a positive scaler, converges to a nbhd. w.p.1:

$$\liminf_{t\to\infty}\|f_t-f^*\|_{\mathcal{H}}\leq \frac{\sqrt{\eta}}{\lambda}\Big(K+\sqrt{K^2+\lambda\sigma^2}\Big)=\mathcal{O}(\sqrt{\eta})\qquad \text{a.s.}$$

- Bias induced by sparsification asymptotically doesn't hurt too bad
 - ⇒ even when approx. budget doesn't go to null

Convergence Results for POLK

Theorem

The POLK sequence f_t with constant step-size $\eta_t = \eta < 1/\lambda$ and approximation budget $\epsilon = K\eta^{3/2}$ where K > 0 is a scalar, has finite model order: max $M_t \le M^\infty < \infty$

- ▶ Model order of limiting function $f^{\infty} = \lim_t f_t$ is always finite
- ▶ M^{∞} depends on $(K\sqrt{\eta})/(C)$
 - \Rightarrow KOMP criterion, step-size η , constant K, Lipschitz mod. of ℓ

- Case where training examples for a fixed class
 - ⇒ drawn from a distinct Gaussian mixture
- \triangleright 3 Gaussians per mixture, C = 5 classes total for this experiment
 - ⇒ 15 total Gaussians generate data

- Case where training examples for a fixed class
 - ⇒ drawn from a distinct Gaussian mixture
- \triangleright 3 Gaussians per mixture, C = 5 classes total for this experiment
 - ⇒ 15 total Gaussians generate data

- ▶ Grid colors ⇒ decision, bold black dots ⇒ kernel dict. elements
- ▶ Online multi-class kernel SVM achieves ~ 96% accuracy

- Comparison with SVM-only competitor
 ⇒ fixes model order, not approx. error ⇒ set to M = 16
- POLK outperforms in terms of regularized risk

POLK also outperforms in terms of accuracy

- ▶ POLK *learns* correct model order $M_T = 16$
 - ⇒ true data domain has 15 modes

Benchmark Data

Brodatz textures

MNIST Digits

- ▶ Brodatz: classify texture {roof, grass, etc.} (13 classes)
- ▶ MNIST Digits: classify if digit is {0,...,9} (10 total classes)

Benchmark Data Experiments

Objective is stable on real data

Benchmark Data Experiments

- ▶ Stability over descriptive function class $\mathscr{F} = \mathcal{H}$
 - ⇒ translates to small error rates: 4.53%, 2.68%
 - ⇒ better than SVM-only competitor

Benchmark Data Experiments

- POLK learns model order needed for stability
 - ⇒ driven by complexity of class-conditional probability density

Multi-Agent Statistical Learning with Kernels

Introduction

Reproducing Kernels and Nonparametric Estimation

Multi-Agent Statistical Learning with Kernels

From Statistical Learning to Stochastic Control

Conclusion

Multi-Agent Statistical Learning with Kernels

- ▶ Network $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- ▶ Node *i* observes $\{\mathbf{x}_{i,t}, y_{i,t}\}_{t>0}$
 - \Rightarrow wants to learn estimate $\hat{y}_{i,t}$
 - ⇒ as good as one w/ global info

Decentralized nonparametric stochastic program:

$$f^* = \underset{\{f_i\}_{i \in \mathcal{V}} \subset \mathcal{H}}{\operatorname{argmin}} \sum_{i \in \mathcal{V}} \mathbb{E}_{\mathbf{x}_i, y_i}[\ell_i(f_i(\mathbf{x}_i), y_i)] \quad \text{s.t. } f_i = f_j \text{ for all } (i, j) \in \mathcal{E} \ .$$

▶ Penalty functional $\psi_c(f)$ ⇒ each node applies POLK to $\psi_{i,c}(f_i)$

$$\psi_{c}(f) = \sum_{i \in \mathcal{V}} \left(\mathbb{E}_{\mathbf{x}_{i}, \mathbf{y}_{i}} \left[\ell_{i}(f_{i}(\mathbf{x}_{i}), y_{i}) \right] + \frac{\lambda}{2} \|f_{i}\|_{\mathcal{H}}^{2} + \frac{c}{2} \sum_{j \in n_{i}} \mathbb{E}_{\mathbf{x}_{i}} \left\{ [f_{i}(\mathbf{x}_{i}) - f_{j}(\mathbf{x}_{i})]^{2} \right\} \right)$$

Results for KSVM on Gaussian Mixtures

ightharpoonup Penalty initialized c = 0.01, doubles every two hundred samples

Global Objective

Network Disagreement

Model Order

- ▶ Network Disagreement is $\sum_{(i,j)\in\mathcal{E}} \|f_{i,t} f_{j,t}\|_{\mathcal{H}}^2$
- ▶ POLK in multi-agent setting \Rightarrow 95.7% multi-class accuracy

From Statistical Learning to Stochastic Control

Introduction

Reproducing Kernels and Nonparametric Estimation

Multi-Agent Statistical Learning with Kernels

From Statistical Learning to Stochastic Control

Conclusion

Markov Decision Processes

- Agent wants to augment behavior via temporal incentives
 - \Rightarrow starting at state $\mathbf{x}_t \in \mathcal{X} \subset \mathbb{R}^p$, selects action $\mathbf{a}_t \in \mathcal{A} \subset \mathbb{R}^q$
 - \Rightarrow choosing \mathbf{a}_t influences next state $\mathbf{x}_{t+1} \sim \mathbb{P}(\cdot \mid \mathbf{x}_t, \mathbf{a}_t)$
 - \Rightarrow denote \mathbf{x}_{t+1} as \mathbf{y}_t for disambiguation.
- ▶ When transitioning to state \mathbf{y}_t , a reward $r(\mathbf{x}_t, \mathbf{a}_t, \mathbf{y}_t)$ is assigned
 - ⇒ e.g., portfolio revenue, platform stability

Markov Decision Processes

- Agent wants to augment behavior via temporal incentives
 - \Rightarrow starting at state $\mathbf{x}_t \in \mathcal{X} \subset \mathbb{R}^p$, selects action $\mathbf{a}_t \in \mathcal{A} \subset \mathbb{R}^q$
 - \Rightarrow choosing \mathbf{a}_t influences next state $\mathbf{x}_{t+1} \sim \mathbb{P}(\cdot \mid \mathbf{x}_t, \mathbf{a}_t)$
 - \Rightarrow denote \mathbf{x}_{t+1} as \mathbf{y}_t for disambiguation.
- ▶ When transitioning to state \mathbf{y}_t , a reward $r(\mathbf{x}_t, \mathbf{a}_t, \mathbf{y}_t)$ is assigned
- This setting is defined by a Markov Decision Process
 - \Rightarrow a quintuple $(\mathcal{X}, \mathcal{A}, \mathbb{P}, r, \gamma)$
 - \Rightarrow *r* is the reward function, $\gamma \in (0,1)$ is discount factor
 - ⇒ continuous state & action spaces

The Value Function

- ▶ General goal in an MDP \Rightarrow choose actions $\{\mathbf{a}_t\}_{t=1}^{\infty}$
 - \Rightarrow maximize reward accumulation when starting at $\mathbf{x}_0 = \mathbf{x}$

$$V(\mathbf{x}, \{\mathbf{a}_t\}_{t=0}^{\infty}) = \mathbb{E}_{\mathbf{y}} \Big[\sum_{t=0}^{\infty} \gamma^t r(\mathbf{x}_t, \mathbf{a}_t, \mathbf{y}_t) \, \big| \, \mathbf{x}_0 = \mathbf{x}, \{\mathbf{a}_t\}_{t=0}^{\infty} \Big].$$

- \Rightarrow value function; \mathbb{E} taken w.r.t. Markov transition density
- ▶ Determining sequence $\{a_t\}$ for continuous \mathcal{X} , \mathcal{A}
 - ⇒ has been open for decades (Bellman in 1950s)
- Step towards solution ⇒ evaluate action seq. ⇒ policy eval.
 - ⇒ foundation of determining optimal action sequence

Policy Evaluation and Bellman's Equation

- ightharpoonup Control decisions $\mathbf{a}_t \Rightarrow$ chosen according to a fixed distribution
 - \Rightarrow distribution is called a policy $\pi: \mathcal{X} \to \rho(\mathcal{A})$
- Seek to compute value of a policy starting from state x,
 - ⇒ quantified by discounted expected sum of rewards

$$V^{\pi}(\mathbf{x}) = \mathbb{E}_{\mathbf{y}} \Big[\sum_{t=0}^{\infty} \gamma^{t} r(\mathbf{x}_{t}, \mathbf{a}_{t}, \mathbf{y}_{t}) \, \big| \, \mathbf{x}_{0} = \mathbf{x}, \{ \mathbf{a}_{t} = \pi(\mathbf{x}_{t}) \}_{t=0}^{\infty} \Big].$$

Policy Evaluation and Bellman's Equation

- ▶ Decomposing value function into its first & subsequent terms
 ⇒ yields the Bellman evaluation equation (Bellman 1957)
 - $V^{\pi}(\mathbf{x}) = \int_{\mathcal{X}} [r(\mathbf{x}, \pi(\mathbf{x}), \mathbf{y}) + \gamma V^{\pi}(\mathbf{y})] \mathbb{P}(d\mathbf{y} \mid \mathbf{x}, \pi(\mathbf{x})) \text{ for all } \mathbf{x} \in \mathcal{X},$

▶ Bellman eval. eqn. defines Bellman operator $\mathscr{B}^{\pi}: \mathcal{B}(\mathcal{X}) \to \mathcal{B}(\mathcal{X})$

$$(\mathscr{B}^{\pi}V)(\mathbf{x}) = \int_{\mathcal{X}} [r(\mathbf{x}, \pi(\mathbf{x}), \mathbf{y}) + \gamma V(\mathbf{y})] \mathbb{P}(d\mathbf{y} \mid \mathbf{x}, \pi(\mathbf{x})) \text{ for all } \mathbf{x} \in \mathcal{X},$$

▶ $V^{\pi}(\mathbf{x})$ is fixed pt. of \mathscr{B}^{π} : $(\mathscr{B}^{\pi}V^{\pi})(\mathbf{x}) = V^{\pi}(\mathbf{x})$ (Bertsekas, '78) \Rightarrow our goal is to find $V^{\pi} \Rightarrow$ solve fixed point prob.

Compositional Stochastic Programming

- ▶ Reformulate **Bellman eval. eqn.** as comp. stochastic prog.
 - \Rightarrow Subtract $V^{\pi}(\mathbf{x})$ from both sides, pull inside expectation:

$$0 = \mathbb{E}_{\mathbf{y}}[r(\mathbf{x}, \pi(\mathbf{x}), \mathbf{y}) + \gamma V^{\pi}(\mathbf{y}) - V^{\pi}(\mathbf{x}) \, \big| \, \mathbf{x}, \pi(\mathbf{x})] \quad \text{ for all } \mathbf{x} \in \mathcal{X} \ .$$

Square above eqn., then integrate out \mathbf{x} , policy $\pi(\mathbf{x})$:

$$V^{\pi} = \underset{V \in \mathcal{B}(\mathcal{X})}{\operatorname{argmin}} \, \mathbb{E}_{\mathbf{x}, \pi(\mathbf{x})} \big\{ \frac{1}{2} (\mathbb{E}_{\mathbf{y}}[r(\mathbf{x}, \pi(\mathbf{x}), \mathbf{y}) + \gamma V(\mathbf{y}) - V(\mathbf{x}) \, \big| \, \mathbf{x}, \pi(\mathbf{x})])^2 \big\} \; ,$$

Compositional Stochastic Programming

- ▶ Reformulate **Bellman eval. eqn.** as comp. stochastic prog.
 - \Rightarrow Subtract $V^{\pi}(\mathbf{x})$ from both sides, pull inside expectation:

$$0 = \mathbb{E}_{\boldsymbol{y}}[r(\boldsymbol{x}, \pi(\boldsymbol{x}), \boldsymbol{y}) + \gamma V^{\pi}(\boldsymbol{y}) - V^{\pi}(\boldsymbol{x}) \, \big| \, \boldsymbol{x}, \pi(\boldsymbol{x})] \quad \text{ for all } \boldsymbol{x} \in \mathcal{X} \; .$$

▶ Square above eqn., then integrate out \mathbf{x} , policy $\pi(\mathbf{x})$:

$$V^{\pi} = \operatorname*{argmin}_{V \in \mathcal{B}(\mathcal{X})} \mathbb{E}_{\mathbf{x}, \pi(\mathbf{x})} \big\{ \frac{1}{2} \big(\mathbb{E}_{\mathbf{y}}[r(\mathbf{x}, \pi(\mathbf{x}), \mathbf{y}) + \gamma V(\mathbf{y}) - V(\mathbf{x}) \, \big| \, \mathbf{x}, \pi(\mathbf{x})] \big)^2 \big\} \;,$$

- ▶ Can't search over $\mathcal{B}(\mathcal{X})$ ⇒ Hypothesize $\mathcal{B}(\mathcal{X}) \approx \mathcal{H}$, a RKHS
 - ⇒ Unrestrictive for universal kernel (Micchelli '06), (Gaussian)

$$V^* = \operatorname*{argmin}_{V \in \mathcal{H}} \mathbb{E}_{\mathbf{x}, \pi(\mathbf{x})} \big\{ \frac{1}{2} (\mathbb{E}_{\mathbf{y}}[r(\mathbf{x}, \pi(\mathbf{x}), \mathbf{y}) + \gamma V(\mathbf{y}) - V(\mathbf{x}) \big| \mathbf{x}, \pi(\mathbf{x})])^2 \big\} + \frac{\lambda}{2} \|V\|_{\mathcal{H}}^2$$

 \Rightarrow Define $J(V) = L(V) + (\lambda/2) ||V||_{\mathcal{H}}^2$, L(V) is compositional term

Stochastic Gradient Bias Problem

▶ Differentiate L(V) w.r.t. V:

$$\nabla_{V} L(V) = \mathbb{E}_{\mathbf{x},\pi(\mathbf{x})} \{ \mathbb{E}_{\mathbf{y}} [\gamma \kappa(\mathbf{y},\cdot) - \kappa(\mathbf{x},\cdot) | \mathbf{x},\pi(\mathbf{x})] \mathbb{E}_{\mathbf{y}} [r(\mathbf{x},\pi(\mathbf{x}),\mathbf{y}) + \gamma V(\mathbf{y}) - V(\mathbf{x}) | \mathbf{x},\pi(\mathbf{x})] \}$$

$$\Rightarrow \text{ derivative inside } \mathbb{E} + \text{chain rule + reproducing property}$$

Stochastic descent in H requires stoch. estimate of above grad.

$$\nabla_V J(V, \delta; \mathbf{x}, \pi(\mathbf{x}), \mathbf{y}) = [\gamma \kappa(\mathbf{y}, \cdot) - \kappa(\mathbf{x}, \cdot)][r(\mathbf{x}, \pi(\mathbf{x}), \mathbf{y}) + \gamma V(\mathbf{y}) - V(\mathbf{x})] + \lambda V$$

$$\Rightarrow \delta := r(\mathbf{x}, \pi(\mathbf{x}), \mathbf{y}) + \gamma V(\mathbf{y}) - V(\mathbf{x}) \Rightarrow \text{temporal difference}$$

- ▶ Stoch. grad. biased w.r.t. $\nabla_V J(V)$ due to **correlated** terms
- Coupled descent: estimate both terms in product-of-expectations
- ► Construct total mean of $[\gamma \kappa(\mathbf{y}, \cdot) \kappa(\mathbf{x}, \cdot)]$? \Rightarrow infinite complexity \Rightarrow Build up expectation of scalar temporal difference δ

Functional Stochastic Quasi-Gradient Method

▶ Define a scalar fixed pt. recursion z_t to estimate average TD $\bar{\delta}$

$$\delta_t = r(\mathbf{x}_t, \pi(\mathbf{x}_t), \mathbf{y}_t) + \gamma V_t(\mathbf{y}_t) - V_t(\mathbf{x}_t), \quad \mathbf{z}_{t+1} = (1 - \beta_t) \mathbf{z}_t + \beta_t \delta_t$$

 $\Rightarrow \delta_t \Rightarrow \text{temporal difference}; \ \beta_t \in (0, 1) \Rightarrow \text{step-size}.$

- Stoch. descent step: replace 1st term in expectation w/ estimate
 - $\Rightarrow [\gamma \kappa(\mathbf{y}_t, \cdot) \kappa(\mathbf{x}_t, \cdot)],$ evaluated at triple $(\mathbf{x}_t, \pi(\mathbf{x}_t), \mathbf{y}_t)$
 - \Rightarrow replace δ_t by $z_{t+1} \Rightarrow$ stoch. quasi-gradient (Ermoliev '83)

$$\hat{V}_{t+1} = (1 - \alpha_t \lambda) \hat{V}_t - \alpha_t (\gamma \kappa(\mathbf{y}_t, \cdot) - \kappa(\mathbf{x}_t, \cdot)) \mathbf{z}_{t+1}$$

- $\Rightarrow \alpha_t$ is a second step-size
- Extends gradient temporal diff. (Sutton '09) to infinite MDPs

RKHS Parameterization

▶ If $V_0 = 0 \in \mathcal{H}$, inductively applying Representer Thm. yields

$$\hat{V}_t(\mathbf{x}) = \sum_{n=1}^{2(t-1)} w_n \kappa(\mathbf{v}_n, \mathbf{x}) = \mathbf{w}_t^T \kappa_{\mathbf{X}_t}(\mathbf{x}) .$$

 \Rightarrow define $\mathbf{v}_n = \mathbf{x}_n$ for n even, $\mathbf{v}_n = \mathbf{y}_n$ for n odd

$$\mathbf{w}_{t} = [w_{1}, \cdots, w_{2(t-1)}] \in \mathbb{R}^{2(t-1)},$$

$$\mathbf{X}_{t} = [\mathbf{x}_{1}, \mathbf{y}_{1}, \dots, \mathbf{x}_{t-1}, \mathbf{y}_{t-1}] \in \mathbb{R}^{p \times 2(t-1)}.$$

► Kernel expansion + together with FSQG ⇒ parametric updates:

$$\mathbf{X}_{t+1} = [\mathbf{X}_t, \ \mathbf{x}_t, \mathbf{y}_t], \ \mathbf{w}_{t+1} = [(1 - \alpha_t \lambda) \mathbf{w}_t, \ \alpha_t \mathbf{z}_{t+1}, -\alpha_t \gamma \mathbf{z}_{t+1}],$$

- ▶ Of course, same complexity issue as FSGD in RKHS: $M_t = \mathcal{O}(t)$
 - ⇒ but can solve this w/ sparse projections of POLK!

Parsimonious Kernel Grad. Temporal Difference Fenn

Require:
$$\{\mathbf{x}_t, \pi(\mathbf{x}_t), \mathbf{y}_t, \alpha_t, \beta_t, \epsilon_t\}_{t=0,1,2,...}$$
 initialize $V_0(\cdot) = 0, \mathbf{D}_0 = [], \mathbf{w}_0 = [], z_0 = 0$ for $t = 0, 1, 2, ...$ do

Obtain trajectory realization $(\mathbf{x}_t, \pi(\mathbf{x}_t), \mathbf{y}_t)$

Compute temporal difference and update auxiliary sequence z_{t+1}

$$\delta_t = r(\mathbf{x}_t, \pi(\mathbf{x}_t), \mathbf{y}_t) + \gamma V_t(\mathbf{y}_t) - V_t(\mathbf{x}_t), \quad z_{t+1} = (1 - \beta_t)z_t + \beta_t \delta_t$$

Compute functional stochastic quasi-gradient step

$$\tilde{V}_{t+1}(\cdot) = (1 - \alpha_t \lambda) \tilde{V}_t(\cdot) - \alpha_t (\gamma \kappa(\mathbf{y}_t, \cdot) - \kappa(\mathbf{x}_t, \cdot)) \mathbf{z}_{t+1}$$

Revise dictionary $\tilde{\mathbf{D}}_{t+1} = [\mathbf{D}_t, \mathbf{x}_t, \mathbf{y}_t],$ and weights $\tilde{\mathbf{w}}_{t+1} = [(1 - \alpha_t \lambda) \mathbf{w}_t, \ \alpha_t \mathbf{z}_{t+1}, -\alpha_t \gamma \mathbf{z}_{t+1}]$

Project function $(V_{t+1}, \mathbf{D}_{t+1}, \mathbf{w}_{t+1}) = \mathbf{KOMP}(\tilde{V}_{t+1}, \tilde{\mathbf{D}}_{t+1}, \tilde{\mathbf{w}}_{t+1}, \epsilon_t)$

end for

Convergence of PKGTD ("Pike")

Theorem

PKGTD sequences $\{z_t, V_t\}$ w/ regularizer $\lambda > 0$, step-sizes satisfying:

$$\sum_{t=1}^{\infty} \alpha_t = \infty , \quad \sum_{t=1}^{\infty} \beta_t = \infty , \quad \sum_{t=1}^{\infty} \alpha_t^2 + \beta_t^2 + \frac{\alpha_t^2}{\beta_t} < \infty , \quad \epsilon_t = \alpha_t^2$$

converges: $V_t \rightarrow V^*$ defined w.p. 1, achieving RKHS Bellman fixed pt.

- ▶ Generally, step-sizes have to satisfy: $\alpha_t = \mathcal{O}(t^{-p_\alpha})$, $\beta_t = \mathcal{O}(t^{-p_\beta})$, $\Rightarrow p_\alpha \in (3/4, 1), p_\beta \in (1/2, 2p_\alpha 1)$.
- ▶ Increase V_t accuracy w.r.t. \mathscr{B}^{π} fixed pt. \Rightarrow reduce regularizer λ

Convergence of PKGTD ("Pike")

Theorem

When PKGTD is run w/ constant learning rates $\alpha_t = \alpha$ and $\beta_t = \beta$, compression budget $\epsilon_t = \epsilon$ and large enough regularizer, i.e.

$$0 < \beta < 1, \alpha = \beta, \epsilon = C\alpha^2, \lambda = G_V^2 \frac{\alpha}{\beta} + \lambda_0$$

where C>0 is a scalar, $0<\lambda_0<1$. Then the sub-optimality $\|V_t-V^*\|_{\mathcal{H}}^2$ converges in mean to nbhd.:

$$\limsup_{t\to\infty} \mathbb{E} \|V_t - V^*\|_{\mathcal{H}}^2 = \mathcal{O}\left(\alpha + \alpha^2 + \alpha^3\right) .$$

▶ Larger step-sizes require $0 < \beta < 1$ but arbitrary $\alpha > 0$

$$\limsup_{t\to\infty} \mathbb{E}\|\textit{V}_t - \textit{V}^*\|_{\mathcal{H}}^2 = \mathcal{O}\left(\alpha^2 + \beta^2 + \frac{\alpha^2}{\beta}\left[1 + \alpha^2 + \frac{\alpha}{\beta} + \frac{\alpha^2}{\beta^2}\right]\right) \ .$$

 \Rightarrow dominated by ratios α^2/β and α^2/β^2

Convergence of PKGTD ("Pike")

Corollary

The PKGTD sequence V_t run with constant step-sizes $\alpha_t = \alpha$ and $\beta_t = \beta \in (0,1)$, compression budget $\epsilon_t = \epsilon = C\alpha^2$, and regularizer $\lambda = (\alpha/\beta)G_V^2 + \lambda_0 = \mathcal{O}(\alpha\beta^{-1} + 1)$ has finite model order for all t, i.e., $M_t \leq M^{\infty} < \infty$ for some M^{∞} , as does its limit $V^{\infty} = \lim_t V_t$.

The Mountain Car Problem

- ▶ Mountain Car (Sutton, '98): agent at bottom of valley
 - ⇒ attempts to climb up to top of mountain side
 - \Rightarrow actions $\mathcal{A} = \{\text{reverse}, \text{coast}, \text{forward}\}$
 - \Rightarrow continuous state: scalar position & velocity: $\mathcal{X} = \mathbb{R}^2$.
- ▶ Reward function $r(\mathbf{x}_t, \mathbf{a}_t, \mathbf{y}_t)$ is -1
 - \Rightarrow unless \mathbf{y}_t is goal state at mountain top, in which case it's 0
- ► Benchmark policy ⇒ trust region policy opt. (Schulman '15)
- ► Training set of states & rewards ⇒ run policy for 5000 steps
- Ground truth via "Monte Carlo:" generate 10000 step trajectory
 - ⇒ sample 2000 states: from each, apply policy until termination
 - \Rightarrow use observed discounted return as $\hat{V}_{\pi}(\mathbf{x})$.

Mountain Car Value Function

- ► Percentage Error(V) = $(1/2000) \sum_{i=1}^{2000} |(V(\mathbf{x}_i) \hat{V}_{\pi}(\mathbf{x}_i))/\hat{V}_{\pi}(\mathbf{x}_i)|$
- PKGTD w/ Gaussian kernel to alternatives:
 - ⇒ Gaussian process temporal difference (GPTD) (Engel '03)
 - ⇒ Gradient TD (GTD) (Sutton '09) w/ Gaussian features.
- ▶ PKGTD ⇒ lowest percentage error and memory

Mountain Car Value Function

- \blacktriangleright Contour plot of value function, bold dots \Rightarrow kernel dict. elements
 - \Rightarrow plateau at mountain top is goal \Rightarrow has highest value of null
- Value function tells us value we obtain in any state
 - ⇒ and where in the state space is good for achieving goal

Conclusion

Introduction

Reproducing Kernels and Nonparametric Estimation

Multi-Agent Statistical Learning with Kernels

From Statistical Learning to Stochastic Control

Conclusion

Conclusion

- Greedily compressed RKHS-valued stochastic approx. algs.
 - ⇒ allow us to stably reduce memory of kernelized regressors
- Accurate, stable, low complexity stat. learning w/ streaming data
 - ⇒ Extendable to multi-agent networks using dist. opt. methods
- Policy eval. in infinite MDPs ⇒ RKHS-valued comp. stoch. prog.
 - ⇒ solved with sparse projected stochastic quasi-gradient
 - ⇒ favorable trade-off in memory vs. accuracy
- ▶ Compressed kernels ⇒ stable, low-memory, highly accurate

Future Directions

Near Term:

- General compositional stochastic prog. in RKHS
 - ⇒ minimizing estimator variance, Bellman optimality eqn.
- ► Adaptive kernels ⇒ Optimize kernel parameters & model points

Future Directions

Near Term:

- ► General compositional stochastic prog. in RKHS
 - ⇒ minimizing estimator variance, Bellman optimality eqn.
- ► Adaptive kernels ⇒ Optimize kernel parameters & model points

Longer Term:

- ► Exact decentralized statistical learning via primal-dual method ⇒ requires Rep. Thm. for stoch. saddle pt. prob. in RKHS
- ► Multi-scale kernels ⇒ composition/linear combo of kernels ⇒ benefits of multi-layer networks + stability theory in RKHS
- ► Reinforcement learning ⇒ POLK for policy search & actor-critic

References

Parts I-II of Dissertation/Proposal Presentation:

- ⇒ A. Koppel, F. Jakubeic, and A. Ribeiro, "A saddle point algorithm for networked online convex optimization," IEEE Trans. Signal Process., vol.PP, no.99, June. 2015.
- ⇒ A. Koppel, B. Sadler, and A. Ribeiro, "Proximity without Consensus in Online Multi-Agent Optimization," in IEEE Trans. Signal Proc. (submitted), Mar. 2017.
- ⇒ A. Koppel, J. Fink, G. Warnell, E. Stump, and A. Ribeiro, "Online learning for characterizing unknown environments in ground robot vehicle models," in 2016 IEEE International Conference in Intelligent Robots and Systems (IROS). IEEE, 2016.
- ⇒ A. Koppel, G. Warnell, E. Stump, and A. Ribeiro, "D4L: Decentralized Dynamic Discriminative Dictionary Learning," in IEEE Trans. Signal Info. Process over Networks., June. 2016.

Part III of Dissertation/Defense Presentation:

- ⇒ A. Koppel, G. Warnell, E. Stump, and A. Ribeiro, "Parsimonious online learning with kernels via sparse projections in function space," The Journal of Machine Learning Research (under review), 2017 [arXiv preprint arXiv:1612.04111, 2016].
- ⇒ A. Koppel, S. Paternain, C. Richard, and A. Ribeiro, "Decentralized efficient nonparametric stochastic optimization," in IEEE Trans. Signal Process (under preparation), 2017. [Preliminary version submitted to GlobalSIP 2017]
- ⇒ A. Koppel, G. Warnell, E. Stump, and A. Ribeiro, "Breaking bellman's curse of dimensionality: Efficient kernel gradient temporal difference," in Advances in Neural Information Processing Systems (under review), 2017.