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Problem Formulation

I Function at each node i is parameterized by random variable θi

I Convex objective at each node is denoted by Eθi [f
i (xi ,θi )]

I Optimization problem without consensus is formulated as

x∗ ∈ argmin
x∈XN

N∑
i=1

Eθi [f
i (xi ,θi )]

s.t. Eθi ,θj

[
hij(xi , xj ,θi ,θj)

]
≤ γij , for all j ∈ ni .

I Important in the context of communication systems
⇒ Interference management in wireless systems
⇒ Coordinated beam-forming in cellular network
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Constraints Arising in Practice

The constraints in the problem includes

I Consensus constraints ∥∥xi − xj
∥∥ ≤ γij

I Quality of service
SINR(xi , xj) ≥ γij

⇒ where SINR is the signal-to-interference-plus-noise function

I Relative entropy constraint

D(xi || xj) ≤ γij

I Budget constraints

γmin
ij ≤ x i + x j ≤ γmax

ij
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Contribution

I We propose a stochastic primal-dual method to solve this problem

⇒ amenable to asynchronous implementation

⇒ consider asynchronous modification

I Mean convergence from synchronous case carries over to this setting

⇒ O(
√
T ) primal sub-optimality and O(T 3/4) constraint violation

⇒ when asynchrony is uniformly bounded

I Demonstrate effective implementation in wireless comms.

⇒ experimental benefits of asynchronous online processing
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Lagrangian Relaxation

I Consider Lagrangian relaxation of the problem as

L(x,λ) =
N∑
i=1

[
E
[
f i (xi ,θi )

∑
j∈ni

λij
(
hij
(
xi , xj ,θi ,θj

)
− γij

)
− δε

2
(λij)2

]]

⇒ λij ≥ ⇒ Lagrange multiplier associated to non-linear constraint
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Stochastic Approximation

I Stochastic approximation of the Lagrangian is

L̂t(x,λ) =
N∑
i=1

[
f i (xi ,θi

t)
∑
j∈ni

λij
(
hij
(
xi , xj ,θi

t ,θ
j
t

)
−γij

)
− δε

2
(λij)2

]
.

⇒ Note the t index
⇒ Objective is stationary here (ensemble average = actual mean)
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Stochastic Primal-Dual Method

I Alternate primal descent/dual ascent steps on stochastic Lagrangian

xt+1 = PX
[
xt − ε∇xL̂t(xt , λt)

]
,

λt+1 =
[
λt + ε∇λL̂t(xt , λt)

]
+
,

⇒ These updates exhibits decentralized implementation

I Synchronous primal updates is given by

xit+1 = PX
[
xit − ε

(
∇xi f

i (xit ,θ
i
t) +

∑
j∈ni

(
λijt + λjit

)
∇xih

ij
(
xit , x

j
t ,θ

i
t ,θ

j
t

))]
.

Likewise, the dual update for each edge (i , j) ∈ E is

λijt+1=
[
(1− ε2δ)λijt + ε

(
hij
(
xit , x

j
t ,θ

i
t,θ

j
t

))]
+
.
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Asynchronous Updates

I The primal update is given by

xit+1 = PX
[
xit − ε

(
∇xi f

i (xit−τi (t),θ
i
t−τi (t))

+
∑
j∈ni

(
λijt + λjit

)
∇xih

ij
(
xit−τi (t), x

j
t−τj (t),θ

i
t−τi (t),θ

j
t−τj (t)

))]
.

I Likewise, the dual update for each edge (i , j) ∈ E is

λijt+1=
[
(1− ε2δ)λijt + ε

(
hij
(
xit−τi (t), x

j
t−τj (t),θ

i
t−τi (t),θ

j
t−τj (t)

))]
+
.
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Algorithm Cartoon

Nbhd.

Node

x j0 x j1−τ1(t) x j2−τ2(t)
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Grad0 Grad[1] Grad[2]

λji
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λij
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λji
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λij
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λji
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λij
2

x i0
x j0

xi1−τ1(t)
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Technical Settinng

I Assumption 1 Network G is symmetric and connected

I Assumption 2 Existence of constrained optima (Slater’s condition)

I Assumption 3 Stochastic Gradient Variance all i and t satisfy

E
∥∥∥∇xi f

i (xi ,θi
t)
∥∥∥2

≤ σ2
f

E
∥∥∥∇xih

ij
(
xi , xj ,θi

[t]i ,θ
j
[t]j

)∥∥∥2

≤ σ2
h

I Assumption 4 Constraint has bounded Variance for (i , j) ∈ E and t

max
(xi ,xj )∈X

E
[(

hij
(
xi , xj ,θi

t ,θ
j
t

)2
)]
≤ σ2

λ

I Assumption 5 Lipschitz continuity

‖F (x)− F (y)‖ ≤ Lf ‖x− y‖ . for any (x, y) ∈ RNp

Assumption 6 (Bounded Delay) for each i , τi (t) ≤ τ <∞
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Convergence Results

Theorem 1
Under the Assumptions 1-6, with constant step size ε = 1/

√
T , the

average time aggregation of the sub-optimality sequence
E [F (xt)− F (x∗)] is

T∑
t=1

E[F (xt)−F (x∗)]≤ O(
√
T ) (1)

Likewise, the delayed time aggregation of the average constrain violation
also grows sublinearly in T as

∑
(i,j)∈E

E

[[ T∑
t=1

(
hij(xi[t]i

, xj[t]j
,θi

[t]i ,θ
j
[t]j

)− γij
) ]

+

]
≤ O(T 3/4) (2)
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Interference Management via Pricing

I Consider the system model

SC 3
MU 2

Macro Base Station               

(MBS)

SC 1

MU 1

SCU
SC 2

Figure: Heterogeneous cellular network with one MBS, two MUs, and
three SCBSs with each serving one, two, and one SCU, respectively.
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Problem Formulation

I BS regulates this cross-tier interference
⇒ by imposing a penalty x in on the SCBSs n ∈ Ni

I The total revenue generated by the BS is therefore given by

M∑
i=1

∑
n∈Ni

x ingnip
i
n

I The BS also adheres to the constraint
⇒ total penalty imposed on each SCBS is within certain limit, i.e.,

Cmin ≤
∑

i :n∈Ni

x in ≤ Cmax.

⇒ constraint imposes fairness of base station to small cell operators
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Problem Formulation

I The optimization problem for interference management is

max
{x i

n}

M∑
i=1

∑
n∈Ni

E
[
x ingnip

i
n(x in, h

i
n)
]

s. t.
∑
n∈Ni

E
[
gnip

i
n(x in, h

i
n)
]
≤ γi 1 ≤ i ≤ M

Cmin ≤
∑

i :n∈Ni

x in ≤ Cmax 1 ≤ n ≤ N
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Proposed Algorithm

Online interference management through pricing
Input initialization x0 and λ0 = 0, step-size ε, regularizer δ
for t = 1, 2, . . . ,T
loop in parallel for all MU and SCBS user
(1) Send dual vars. λmt to nbhd.
(2) Observe the delayed primal and dual (sub)-gradients
(3) Update the price x in,t+1 at SCBS n as

x in,t+1 =PXn

[
x in,t + ε

(
gni,[t]

W (cµn+νnλ
i
t)

(cµn+νnx in,[t])
2−

1

hin,[t]

·1(x in,[t])
)]

(4) Update dual variables at each MU i

λit+1 =

[
(1−δε2)λit−ε

(
γi−
∑
n∈Ni

gni,[t]

(
W

cµn + νnx in,[t]

− 1

hin,[t]

)
+

)]
+

.

end loop
end for
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Simulation Results

I Parameters selection: For the simulation purposes
⇒ a cell network w/ M = 2 MBSs, N = 3 SCBSs
⇒ {s1, s2} ⇒ nbhd of MU m1, {s2, s3} ⇒ nbhd of MU m2
⇒ Random gains gni and hin ⇒ exponential dist. w/ mean µ = 3
⇒ Cmin = 0.9 and Cmax = 20
⇒ Other parameter values are W = 1MHz , γi = −3 dB,
⇒ δ = 10−5, c = 0.1, µn = νn = 1, and ε = 0.01
⇒ The maximum delay parameter is τ = 10
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Simulation Results

Iterations, t
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Figure: Average objective sub-optimality vs. iteration t
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Figure: Average constraint violation vs. iteration t
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Simulation Results

Iteration, t
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Figure: Average revenue for different interference power margin.
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Simulation Results

Iterations, t
0 100 200 300 400 500

T
ot

al
 r

ev
en

ue

101

102

103

104

Pipelined implementation (asyn.)
Serial implementation (sync.)

Figure: Total revenue generated for synchronous and asynchronous algorithms.
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Conclusion

I Addressed on online learning problems in multi-agent networks

⇒ focused on the case where agents’ losses are not the same

⇒ how to balance local regret with coordination incentives

⇒ when nodes do not operate on common synchronized clock

I Proposed a new asynchronous online saddle point algorithm

⇒ sublinear growth of Delayed regret, Network Discrepancy

⇒ Convergence to Optimal in stochastic settings

I Online asynchronous vision-based localization with moving cameras

⇒ Obtain stable learning in practice, outperform local-only learning

I Online asynchronous interference management through pricing

I Future: beyond vector-valued decisions (nonlinear statistical models)
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Thank You
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