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Constrained Nonlinear Interpolation

I Want to find f ∗ ∈ H to minimize some expected cost R(f )

f ∗ = argmin
f∈H

Ex,y[`(f (x), y)] +
λ

2
‖f‖2
H

such that G(f ) ≤ 0

⇒ Loss ` : H×X × Y → R penalize deviations between f (x), y
⇒ interpret x ∈ X ⊂ Rp as features/state variables
⇒ y ∈ Y ⇒ targets, e.g., reference trajectory or binary labels
⇒ expected risk L(f ) := Ex,y[`(f (x),y)]

I Examples:
⇒ learning with risk constraints
⇒ trajectory planning with obstacle avoidance
⇒ wireless utility maximization with quality of service guarantees
⇒ wireless beamforming with robustness constraints
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Examples

I Learning with nonlinear statistical models and risk constraints
⇒ when distribution P(x,y) has heavy tails
⇒ then learning f (x) by minimizing average loss will “overfit”

I Impose risk constraint, such as CVaR (Rockafeller ’2000)

G(f ) = CVaRα(f )− γ

= min
z∈R

{
z +

1
1− α

Ex,y
{

[`(f (x),y)− z]+
}}
− γ
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Examples

I Trajectory planning with obstacle avoidance
⇒ obstacles define region of state space to be avoided

I Let g(f (x)) > 0 represent safe area in Rp

⇒ upper bound P(g(f (x)) > 0) ≤ γ for a given γ
I Convexified chance constraint:

inf
λ>0

[
Ψ(f , λ)− λγ

]
≤ 0,

here Ψ(f , λ) = λEx [φ(λ−1g(f (x)))] ⇒ φ(·): MGF of P(x)
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Some Context

I Want to find f ∗ ∈ H to minimize some expected cost R(f )

f ∗ = argmin
f∈H

Ex,y[`(f (x), y)] +
λ

2
‖f‖2
H

such that G(f ) ≤ 0

I Classically address using calculus of variations (Hamilton 1800s)
⇒ w/o special structure, can’t solve Euler-Lagrange equations
⇒ with special structure on distribution ⇒ variational inference

I Without hypotheses on distribution, “learning” approaches
⇒ parameterize f , then estimate parameters via samples of x, y

I Choose parameterization s.t. solution close to original problem
⇒ “universal parameterizations:” Bayesian/nonparametric/DNN
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Our Contribution

I Want to find f ∗ ∈ H to minimize some expected cost R(f )

f ∗ = argmin
f∈H

Ex,y[`(f (x), y)] +
λ

2
‖f‖2
H

such that G(f ) ≤ 0

I We adopt a nonparametric parameterization of f
⇒ using a reproducing kernel Hilbert space (RKHS)
⇒ motivated by the fact this param. preserves convexity
⇒ therefore Lagrange duality applies

I Extend Representer Theorem to constrained settings
⇒ for certain constraints, using augmented Lagrangian

I Propose a projected stochastic primal-dual method
⇒ custom projection trades off convergence and complexity
⇒ generalize existing convergence rates from vector case
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Reproducing Kernel Hilbert Space

I Equip H with a unique kernel function, κ : X × X → R, such that:

(i) 〈f , κ(x, ·)〉H = f (x) for all x ∈ X ,

(ii) H = span{κ(x, ·)} for all x ∈ X .

x

f (x)

I Property (i) ⇒Will allow us to compute derivatives
I Kernel examples:

⇒ Gaussian/RBF κ(x,x′) = exp
{
−‖x−x′‖2

2
2c2

}
⇒ polynomial κ(x,x′) =

(
xT x′ + b

)c
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Function Representation

I Consider empirical risk minimization case: sample size N <∞
I Classic Representer Theorem:

f ∗ = argmin
f

1
N

N∑
n=1

`(f (xn),yn) takes the form f (x) =
N∑

n=1

wn κ(xn,x) .

⇒ xn are feature vectors, and wn is a scalar weight.
⇒ f is a kernel expansion over training set
⇒ dates to Riesz & Weiner, to ML by Scholkopf/Smola

I Does not apply to constrained settings . . .
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Function Representation with Constraints

I Consider Lagrangian of constrained problem

Lo(f ,µ) = L(f ) + µ>G(f ) +
λ

2
‖f‖2
H,

Theorem
Suppose constraint takes form G(f ) = Ex,y[g(f (x),y)]

Define saddle pt. prob: (f̌ ∗, µ̌∗) = arg maxµ∈Rm
+

minf∈H Lo(f ,µ;S),

⇒ Consider sample avg. approx. of Lagrangian w/ SN = {xn,yn}N
n=1:

Lo(f ,µ;S) :=
1
N

N∑
n=1

[
`(f (xn),yn) +

m∑
j=1

µjgj (f (xn),yn)
]

+
λ

2
‖f‖2
H.

Then primal minimizer of takes form f (x) =
∑N

n=1 wn κ(xn,x) .

Alec Koppel Projected Stochastic Primal-Dual Method for Constrained Online Learning with Kernels 14



Functional Stochastic Primal-Dual Method

I Formulate augmented Lagrangian of constrained prob:

L(f ,µ) = L(f ) + µ>G(f ) +
λ

2
‖f‖2
H −

δη

2
‖µ‖2.

⇒ µ is Lagrange multiplier, δ is a regularization parameter
⇒ Define stoch. approx. based on sample (xt ,yt ) as L̂t (f ,µ)

I Set ˜̀(f (x),y,µ) = `(f (x),y) +
∑m

j=1 µjgj (f (x),y).

⇒ Then let’s compute primal stochastic gradient:

∇f ˜̀(f (xt ),yt ,µ)(·) =
∂ ˜̀(f (xt ),yt ,µ)

∂f (xt )

∂f (xt )

∂f
(·)

= ˜̀′(f (xt ),yt ,µ)κ(xt , ·)
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Functional Stochastic Primal-Dual Method

I Stochastic primal/dual descent/ascent steps:
ft+1 =(1− ηλ)ft − η

[
`′(ft (xt ),yt ) +

m∑
j=1

µjg′j (ft (xt ),yt )
]
κ(xt , ·),

µt+1 =
[
(1− η2δ)µt + ηg(ft (xt ),yt )

]
+
,

I Via induction, can show ft (x) =
∑t−1

t=1 wtκ(xt ,x) = w>t κXt (x)

⇒ hence ft is parameterized by a growing matrix, weight vec.:

Xt+1 = [Xt , xt ],

wt+1 =
[
(1−ηλ)wt , − η`′(ft (xt),yt)−η

m∑
j=1

µjg′j (ft (xt ),yt )
]
.

Alec Koppel Projected Stochastic Primal-Dual Method for Constrained Online Learning with Kernels 16



Online Subspace Projections

I Define un-projected/unsparsified iterate at step t + 1

f̃t+1 = (1− ηtλ)ft − ηt∇f ˜̀(ft ; xt ,yt ;µt ).

⇒ parameterized by dictionary and coefficients

D̃t+1 = [Dt , xt ], w̃t+1 = [(1− ηtλ)wt , −˜̀′(ft ; xt ,yt ;µt )] .

I Our method: (ft+1,Dt+1,wt+1) = KOMP(f̃t+1, D̃t+1, w̃t+1, εt )

I This amounts to a certain orthogonal subspace projection

ft+1 = argmin
f∈HDt+1

∥∥∥f −
(

(1− ηtλ)ft − ηt∇f ˜̀(ft ; xt ,yt ;µt )
)∥∥∥2

H

:= PHDt+1

[
(1− ηtλ)ft − ηt∇f ˜̀(ft (xt ), yt ;µt )

]
.

I where we define Hilbert subspace HDt+1 = span{κ(dn, ·)}Mt+1
n=1

⇒ dn are model points ⇒ subset of past feature vectors {xu}u≤t
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Kernel Matching Pursuit

I Fix approx. error εt
I Define subspace
HDt+1 = span{κ(dn, ·)}Mt+1

n=1
I {dn} ⊂ {xu}u≤t ⇒ model pts.
⇒ subset of past feat. vecs.

I Remove kernel dict. elements
I Stopping criterion:
‖f̃t+1 − ft+1‖H ≤ εt

I New model order:
Mt+1 ≤ Mt + 1
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Technical Setting

I The feature space X ⊂ Rp, target domain Y ⊂ R are compact,
and kernel is bounded supx∈X

√
κ(x,x) = X <∞

I Instantaneous loss ` : H×X × Y → R is uniformly C1-Lipschitz
continuous, and the constraints gi : H×X × Y → R is
C2-Lipschitz, for all z ∈ R for a fixed y ∈ Y.

I The primal loss `(f (x), y) is convex and differentiable with
respect to its scalar argument f (x), as are the constraints
gi (f (x), y) on R for all x ∈ X and y ∈ Y.

I There exists a strictly feasible pt: some f ∈ H satisfies G(f ) < 0.
I The output ft+1 of the KOMP update has Hilbert norm bounded

by RB <∞, and the optimal f ∗ lies in the ball B with radius RB
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Main Result

Theorem
Denote the projected stochastic primal-dual sequence as (ft ,µt ).
After T iterations with a constant step-size selected as η = 1/

√
T and

the approximation budget εt = ε = Pη2, where P > 0 is a fixed
constant, we have

T∑
t=1

E[R(ft )− R(f ∗)] = O(
√

T )

Moreover, the time aggregation of the expected constraint violation of
the algorithm grows sublinearly in T as

m∑
j=1

E
[ T∑

t=1

Gj (ft )
]
+
≤ O(T 3/4).
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Main Result

Corollary
For f̄T =

∑T
t=1 ft/T as the functional formed by averaging the primal

iterates ft over time t = 1, · · · ,T , its objective function satisfies

E[R(f̄T )− R(f ∗)] ≤ O(1/
√

T ).

In addition, the constraint violation evaluated at f T satisfies

m∑
j=1

E
[(

Gj (f̄T )
)]

+
≤ O(T−1/4).
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Discussion

I Comparable to existing results for vector-valued case
⇒ both in terms of primal sub-optimality and constraint violation

I Using a constant step-size and compression budget
⇒ yields fact that model complexity of RKHS function is finite

I Complexity depends on
⇒ parsimony constant P
⇒ kernel choice
⇒ data domain radius X
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Online Multi-Class Kernel SVM

I Case where training examples for a fixed class
⇒ drawn from a distinct Gaussian mixture

I 3 Gaussians per mixture, C = 5 classes total for this experiment
⇒ 15 total Gaussians generate data

-2 0 2

-2

-1

0

1

2

I Grid colors ⇒ decision, bold black dots ⇒ kernel dict. elements
I ∼ 96% accuracy
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Online Multi-Class Kernel SVM

I Case where training examples for a fixed class
⇒ drawn from a distinct Gaussian mixture

I 3 Gaussians per mixture, C = 5 classes total for this experiment
⇒ 15 total Gaussians generate data
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I Grid colors ⇒ decision, bold black dots ⇒ kernel dict. elements
I risk constraint prevents confidence in areas of class overlap
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Online Multi-Class Kernel SVM
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I Comparison with unconstrained (POLK) and penalty approach
⇒ Constrained optimizer has large objective than unconstrained
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Online Multi-Class Kernel SVM
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I Comparable in terms of test accuracy
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Online Multi-Class Kernel SVM
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I Primal-dual most effective for maintaining feasibility
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Online Multi-Class Kernel SVM
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I Constrained optimizer higher complexity than unconstrained
⇒ control decision uncertainty ⇒ higher order data moments
⇒ define more complicated subspace than mean loss
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Conclusion

I Focus on stochastic nonlinear interpolation with constraints
⇒ MPC with obstacle avoidance, risk-aware learning, etc.
⇒ parameterized with RKHS: “universal,” preserves convexity

I Extended Representer Theorem to constrained settings
⇒ via use of empirical Lagrangian

I Proposed stochastic primal-dual method to solve it
⇒ operates in parallel with subspace projection scheme

I Generalized convergence results for vector-valued case
⇒ sub-optimality O(

√
T ); constraint violation as O(T 3/4)

I Online kernel multi-class SVM example
⇒ demonstrates effect of incorporating risk into decisions
⇒ confidence regions repelled by class overlap
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