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Composable Learning

» Learning in multi-agent systems with infrequent communication
» Models learned by different agents composed as one

Figure 1: Scarab robot

» YouTube Video
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https://www.youtube.com/watch?v=kWIigy5MWdU

Reinforcement Learning

agent environment

get reward R, new state s’

Figure 2: In Markov Decision problems, the goal is to find a controller 7(s) that
maximizes the accumulation of rewards [Bel54].
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Reinforcement Learning W\P

N UNIY

agent environment

&) from state s, take action a

get reward R, new state s’

Figure 2: In Markov Decision problems, the goal is to find a controller 7(s) that
maximizes the accumulation of rewards [Bel54].

o0

V7™ (s) := E¢ Z'ytr(st,w(at),s't) |so=s (1)

t=0
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Parameterizing the Action-Value Function

» Action-value function, the accumulation of rewards given initial s, a
o0
Q™ (s,a) := Eg Zytr(st,w(st),s’t) | so =s, (2)
t=0
» Advantage Function, where max, A(s,a) = 0 [Bai94]
Q" (s,a) = V™(s) + A"(s,a) (3)
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Parameterizing the Action-Value Function

» Action-value function, the accumulation of rewards given initial s, a

Q™ (s,a) := Eg Zytr(st,w(st),s’t) | so =s, (2)
=0

» Advantage Function, where max, A(s,a) = 0 [Bai94]
Q7(s,a) = V7(s) + A7(s,a) (3)

» Parameterizing the advantage function as a quadratic function yields
computational savings [GLSL16]

Q(s,a) = V(s) - %(a — 7(s))LT(s)L(s)(a — 7(s)) (4)

Model:
> V(s) - value of state s
» 77(s) - policy at state s
» [(s) - curvature of the advantage at s
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Bellman Error

» Bellman optimality equation [BS04]:
Q*(s,a) = E¢[r(s,a,s") + ymax Q(s',a’)] (5)
a/

» To find the optimal policy, we seek to satisfy (5) for all state-action
pairs, yielding the cost functional:

J(V’ T, L) = Es,a()’(sv a) - Q(Sa a))2a (6)

where y(s,a) = Eg[r(s,a,s’) + yV(s')].
» Finding the Bellman fixed point reduces to the stochastic program:

VE L = in _J(V,mL). 7
Lt =arg min (V,m, L) (7)
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Reproducing Kernel Hilbert Spaces (RKHS)

Figure 3: Goal: Approximate a smooth function via samples

E. Tolstaya, E. Stump, A. Koppel, A. Ribeiro Composable Learning 8



Figure 4. Method: Gradient descent in the RKHS.
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Reproducing Kernel Hilbert Spaces (RKHS)

v

We restrict B(S) to be a reproducing Kernel Hilbert space (RKHS)
H to which V, m and L belong [KTSR17].

An RKHS over S is a Hilbert space is equipped with a reproducing
kernel, an inner product-like map x : S x & — R [NK09, AMP09]:

()(m, (s, ))w = 7(s),  (i)H = span{(s,-)} (8)

» A continuous function over a compact set may be approximated
uniformly by a function in a RKHS equipped with a universal kernel
[MXZ06].

We use the Gaussian kernel with constant diagonal covariance ¥

v

v

K(s, ') = exp{—%(s _§)r(s— )T (9)
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Stochastic Gradient Descent in the RKHS

. H /
» Goal: Learn V, 7 and L using samples (s;, ay, r¢, S})

> Solution: Stochastic semi-gradient descent [SB18] uses the
directional derivative of the loss where the target value y; is fixed:

Ye = re 4+ yVi(st) (10)

» Temporal difference: §; := y; — Q:(st, a¢)
» We obtain the stochastic functional semi-gradients of the loss
J(V,m, L) via the reproducing property of the RKHS:

VyJ(V, 7, L) = —6ik(st, ) (11)
Vad(V,m, L) = =8:L(se)L(se) " (a — me(se))s(se, )
VLJ(V, 7, L) = 6:L(st) " (ar — me(se))(ar — me(se)) " (se, -)

» The optimal V, 7 and L functions in the RKHS are of the form:

N

= Z purplewy,k(sp,s), Z W k(Sn, S) Z W k(S

n=1
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Model Learning

Algorithm 1 Q-Learning with Kernel Normalized Advantage Functions

Input: o, {o, Bt, Cey €6, Xt Fe—0,1,2...

1: Vo() = 0,7T0(-) =0, Lo() = /ol,po(') =0

2: fort=0,1,2,... do

3:  Obtain trajectory (s;,ay, rt, s;) where a; ~ N (m:(st), X¢)

4 Compute the target value and Bellman error
Ye=re+7Ve(st), 0r =y — Qe(se, ar)
5: Compute the stochastic estimates of the gradients of the loss

@VJ(Q,_L) = —0:5(st, ), @,TJ(Qt) = —(5,3L(st)L(s,_;)T(at—wt(st))ﬁ(st7 ),
ﬁLJ(Qt) = 0¢L(se) "(ar — me(se)) (@ — me(se)) (st )

6: Update V, 7, L,A,o: .
Vt+1 =V - OétVVJ(Qt)7 Tt41 = T — 5tv7rJ(Qt),
Legi=Le—GV(Q),  per1 = pe+ K(st)

7: Obtain greedy compression of Vi1, i1, Liv1, prr1 via KOMP
8: end for

9: return V 7, L
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Model Composition

— filx)
— folx)
— fi(x)

— (COMpOS.

Figure 5: Goal: Compose multiple models off-line.
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Model Composition

H . H _ !
Given: N models 7; each trained on D; = {(s¢,ay, rt,s}) be=1,..n;
N

Goal: Fit I, which performs as well as 7 trained on |J D;
i=1

» Interpolate among m; to get M by setting MN(s) = m;(s), Vs
Challenge: Policies 7; can disagree fors € S

» While training m;, count the number of training samples around s to
evaluate the support of the model at s:

pi,e+1(s) = pie(s) + K(se,s) (12)
» For every s € S, choose the policy with the highest density of
training samples, p;(s)

» For our application, we use the kernel density of 7; without explicitly
fitting p;

p(mins) = 3 K(si9) (13)

SKET;
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Model Composition

Algorithm 2 Composition with Conflict Resolution

Input: {mi(s) = 51" wyir(s,s;), pi(s) = 27" viph(s, 85) }im12. . €
. Initialize M(-) = 0, append centers D = fsn, Ce Sy
: for each sj; € D chosen uniformly at random do

if p,'(S,'j) > Maxg£ pk(s,-j) then

M="N() + (mi(sij) — N(sy))x(sy )

end if
end for
: Obtain compression of 7 using KOMP with €
return f

[y

e S A 4
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Collision Avoidance Experiments

» State: 5 range readings from
LIDAR at at an angular interval
of 34° with a field of view of
170°

» Action: angular velocity of the
Scarab robot, a € [ —0.3,0.3]

rad/s
» Reward:
—200, if collision '
r(s) = .
+1, otherwise

» Sensor readings are received

and controls are issued at 10 Hz k ‘

» Constant forward velocity of
0.15 m/s

» YouTube Video

Figure 6: Four environments were simulated
using Gazebo for training and testing.
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Simulation Results - Average Reward
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Figure 7: Reward averaged over 10 trials in the Round environment (black)
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Simulation Results - Bellman Error
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Figure 8: Training loss averaged over 10 trials in the Round environment (black)
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Simulation Results - Model Composition

Policies / Reward Round Maze  Circuit 2 Circuit 1

1- Round 1000 -11663 -608 ~608
2 - Maze 1000 1000 -5 -407
3 - Circuit 2 1000 -11663 1000 196
4 - Circuit 1 1000  -11462 -407 1000
1/2 1000 1000 -5 -206
1/3 1000 -11663 799 -206
1/4 1000 -11261 -206 799
2/3 1000 1000 1000 -5
2/4 1000 1000 -5 799
3/4 1000 -11462 397 397
1/2/3 1000 1000 799 196
1/2/4 1000 1000 -5 1000
1/3/4 1000 -11663 397 799
2/3/4 1000 1000 799 -206

1/2/3/4 1000 1000 1000 508

Table 1: Composability results
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Conclusion and Future Work WP@I]I]

» Contributions
» Stochastic gradient descent algorithm for RL in RKHS
» Formulation of the problem of composable learning
» Policy composition algorithm
» Future Work
> Use deep dimensionality reduction techniques for image data
> Extend to partially observable environments

Figure 9: Control of multiple quadrotors based on image data
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