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_ Bayesian Methods E,'EV,_-DM

Supervised learning, map features to targets x — y = f(x)
= found by minimizing loss ¢(y, y) averaged over data (X, y)

— Bayesian methods ask: given {(Xy, ¥u)})u<:, Observe Xx;
= how to form posterior distribution P(y; \ {Xu, Yutuet U {X¢})

— Needed for computing confidence intervals, quantiles, etc.
= robustness/safety gaurentees, uncertainty-aware planning
= foundation of climate forecasting, SLAM, robust MPC
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7; Bayesian Methods E:'sw:am

I

Can easily predict mean when dynamics are linear with AWGN
= Kalman filter

— In many modern applications, dynamics inherently nonlinear
= legged robotics, indoor localization, meterology

— How to estimate arbitrary posterior P(y | {Xu, Yutu<t U {X¢}) ?
= GPs, particle filters, “Bayesian deep networks”
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Gaussian Processes {DE' vCOM

GPs = nonparametric Bayesian method ( X C R?, Y C R)
= y = f(x) = capture relationship of (X,y) € X x ¥
= estimate f via N training examples S = {Xp, yn}N_,.

— Unlike ERM, assume f(x) follows parameterized distribution
= then seek to estimate those parameters.
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I

GPs = nonparametric Bayesian method ( X C R?, Y C R)
= y = f(x) = capture relationship of (x,y) € X x Y
= estimate f via N training examples S = {Xp, yn}N_,.

— Unlike ERM, assume f(x) follows parameterized distribution
= then seek to estimate those parameters.

— Prioronfs = [f(Xp), -, f(Xn)] = Gaussian: fs ~ N (0,Ky)
= Covariance Ky = [5(Xm, Xn)I)h_; viakernel k. : X x X — R
= Kernel = prior about distance between points
= e.g., Gaussian x(Xm, Xp) = exp{—||Xm — Xp||?/c?}
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I

GPs =- nonparametric Bayesian method ( X C R°, Y C R)
= y = f(x) = capture relationship of (x,y) € X x Y
= estimate f via N training examples S = {X,, yn}N_,.

— Unlike ERM, assume f(x) follows parameterized distribution
= then seek to estimate those parameters.

— Standard GPs =- Gaussian noise corrupts fs to form obs.
— Observations have prior dist. P(y | fs) = N (fs, 0?l)

= where o2 is some variance parameter.
— Integrate prior = marginal prob. P(y | S) = N'(0, Ky + o?l)
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I

GPs = nonparametric Bayesian method ( X C RP, Y C R)
= y = f(x) = capture relationship of (x,y) € X x Y
= estimate f via N training examples S = {X,, yn}N_,.

— Unlike ERM, assume f(x) follows parameterized distribution
= then seek to estimate those parameters.

— Upon receiving new sample x 1, form posterior for yn. ¢ as

P(yn1 | S UXng) = N(“N+1 |s’ D }s)

= where the mean and covariance are given by

HN+1 | s = kS(XN+1 )[KN + O'2|]71YN

2 s~ K(XN415 XN41)

— k5 (xn 1) [Kn + 0?1 ks (Xn+1)
= ks(X) = [£(X1,X); - - - 5(Xn, X)] = empirical kernel map
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Curse of Dimensionality DEVCOM

I

Computing posterior mean requires:
= computing empirical kernel map ks(x)
= inverting kernel matrix Ky
— Complexity of former computation is O(N); the later is O(N®)

— In era of big data and streaming applications: N — o

= this causes GPs to require infinite complexity in the limit!
— Question: as N — oo, how to find close-to-optimal GP?

= with finite memory that’s flexible, problem-dependent

= suitable for online/streaming settings
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. Some Context E,'EV,_-DM

Memory-reduced GPs = two categories [Rasmussen Ch. 8]
= greedy forward selection (Seeger, Csato & Opper, etc.)
= variational approx. GP likelihood (Tsitsias, Snelson, etc.)

— Overarching theme: fix some memory budget M
= “Project” likelihood of additional points onto “subspace”
= since M unknown a priori, fixing it may cause divergence

— Goal: memory under control & approximate convergence
= most existing approaches lack consistency guarantees

— Approach: compress current posterior w.r.t. metric
= allows complexity to grow/shrink via data importance
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Online Gaussian Processes DEvVCOM
=

Define time-series of observations as S; = {Xy, yutu<t
= Rewrite posterior in terms of S; U {X;;1} as

Prals, = ks, (Xe+1)[Ke + 0?1~ Ty;
2 B K(Xer1: Xeg1)
— K&, (X1 [Kt + 0?1 'K, (Xp1).
— Kernel dictionary X; := [Xq;- - - ; X{] € RP*!

= grows i.e. X¢11 = [X¢; Xe11] € RPXE, storing full past {X,}u<t-
= Define no. of columns in dictionary as model order M;.
= GP posterior has model order M; = t.

— Denote posterior of y; as p; = P(y; \ Si—1 UX¢)
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Online Gaussian Processes CDEV,_-DM
=

Suppose posterior is defined by some kernel dict. D € RP*M
= Rather than X; which stacks all past points
— Then the posterior parameters may be computed as

Piilp = kp(X¢+1)[Kpp + o2 'y;

% = K(Xt+1, Xt11)

—kp ¢11)[Kp,o+0%1] 'K (Xe11)-

t+1|D

— kernel matrix K; = Kpp; empirical kernel map ks(-) = kp(-),
= [Kp,p]mn = £(dm, dn), kp = [k(d1,-); -+ ; k(du, )]
= dictionary pts. = subset of past obs. {dn}¥_, C {x,}u<¢
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7; Compressing the Posterior E,'EV,_-DM

I

Given dictionary D; € RP*(M) at time t and obs. Xy, 1

= Compute posterior distribution pp, := N(“m |D ,Em |D )
t t

— Compress by fixing error nbhd. at N'(x, B D ‘D)

= w.r.t. Hellinger metric: easily computable for Gaussians
— for distributions v = N (1, X4), A = N(pu2, X2), given as

Y 1/4): 1/4 1 _
(v, \) =\/ 1 —|1|i||2|exp{—8(u1 )£ (- uz)}

where ¥ = (X1 + X2)/2.
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. @ Compressing the Posterior E,'EV,_-DM

Given dictionary D; € RP*(M) at time t and obs. Xy 1

=- Compute posterior distribution pp, := N(“m B D o )
t t

— Compress by fixing error nbhd. a’tj\/'(;ut+1 B 'z |D)
t t

= w.r.t. Hellinger metric: easily computable for Gaussians

— Greedily prune w.r.t. Hellinger metric while inside nbhd.
= Accomplished via destructive variant of matching pursuit
= Customized to operate with the Hellinger distance

(k5,.,» Zp,,,> De+1) = DHMP(pe, Dy’ Z |’ Dest.er)

— Then append latest point: Dy 1= [I~),+17xt+1]
= details of matching pursuit are messy, left to the paper
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_ 7; Parsimonious Online GPs (POG) E,'EV,_-DM

A geometric view

Banach Space of Gaussian Process Posteriors
— Learning update rule

_ /// N \\\
Fiitlo =kp(X:1)[Kp,p+o°l "y /// Qi Prertet e /\v\\
/ \
t+1]D "~ KXt 1,Xp41) ‘,’/ DHMT/ A7
|
—kof;1)[Kp o0 °1] koK)

| ®
Maximum a posleriori\\
—Compress w.r.t. Hellinger metric

= causing e error

\

|
4 - . l
Prs1 ™ (Dr+|~l11+w?:/+1)

= add latest pt: D;1 = [Ds; x/]
— Linked to projected gradient
= with hard-thresholding
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Theorem
POG attains the following posterior consistency results almost surely:

(i) for decreasing budget ¢; — 0, Pn{dn(pp,, pp,_,) < @ | St — 1

(ii) for fixed budget ¢; = ¢ > 0, Pn{dx(pp,, pp,_,) <7+ €| St} — 1

For compression decreasing to null =- exact convergence

= for constant compression budget, converge to nbhd.
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I

Theorem

Suppose POG is run with constant budget e > 0. Then the model
order M; of the posterior distributions pp, remains finite for all t, and
the limiting distribution p~. has finite model complexity M>

Merit of constant compression budget: provable finite memory
= characterizing tradeoff of memory/consistency is difficult
= depends on kernel hyperparameters, feature space radius

— Remaining open problem: how to establish this dependence
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Posterior mean square error & actual interpolation
= on LIDAR data set (nonlinear regression problem)
= POG attains performance comparable to dense GP
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Evolution of Hellinger metric over time between sparse/dense GP

= nearly identical

— but POG reduces complexity by orders of magnitude
= by kicking out information extraneous to the posterior
= has flexible complexity via convergence criterion

Consistent Online Gaussian Processes



71N .
(z‘ Conclusion CDEV,_-DM

I

Gaussian processes =- often used in autonomy/robotics

= curse of dimensionality: complexity ~ sample size

= a challenge common to nonparametric/Bayesian methods
— Precludes use in online settings

— Existing memory-reduction: proj. pts. to fixed size subspace
= lack convergence guarantees, in contrast to POG

— POG trades off consistency and memory
— Experiments = POG and dense GP exhibit similar behavior

— Future directions: GP bandits, safe low-latency MPC
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