

Consistent Online Gaussian Process Regression Without the Sample Complexity Bottleneck

Alec Koppel U.S. Army Research Laboratory

Statistical Learning
IEEE American Control Conference
July 11, 2019

Bayesian Methods

Supervised learning, map features to targets $\mathbf{x} \mapsto \hat{\mathbf{y}} = f(\mathbf{x})$

- \Rightarrow found by minimizing loss $\ell(\hat{y}, y)$ averaged over data (\mathbf{x}, y)
- \rightarrow Bayesian methods ask: given $\{(\mathbf{x}_u, y_u)\}_{u < t}$, observe \mathbf{x}_t
 - \Rightarrow how to form posterior distribution $\mathbb{P}(y_t \mid \{\mathbf{x}_u, y_u\}_{u < t} \cup \{\mathbf{x}_t\})$
- → Needed for computing confidence intervals, quantiles, etc.
 - ⇒ robustness/safety gaurentees, uncertainty-aware planning
 - ⇒ foundation of climate forecasting, SLAM, robust MPC

Bayesian Methods

Can easily predict mean when dynamics are linear with AWGN

- ⇒ Kalman filter
- ightarrow In many modern applications, dynamics inherently nonlinear
- ⇒ legged robotics, indoor localization, meterology
- \rightarrow How to estimate arbitrary posterior $\mathbb{P}(y \mid \{\mathbf{x}_u, y_u\}_{u \leq t} \cup \{\mathbf{x}_t\})$?
 - ⇒ GPs, particle filters, "Bayesian deep networks"

Bayesian Methods

Can easily predict mean when dynamics are linear with AWGN

- ⇒ Kalman filter
- ightarrow In many modern applications, dynamics inherently nonlinear
 - ⇒ legged robotics, indoor localization, meterology
- \rightarrow How to estimate arbitrary posterior $\mathbb{P}(y \mid \{\mathbf{x}_u, y_u\}_{u \leq t} \cup \{\mathbf{x}_t\})$?
 - ⇒ GPs, particle filters, "Bayesian deep networks"

- GPs \Rightarrow nonparametric Bayesian method ($\mathcal{X} \subset \mathbb{R}^p$, $\mathcal{Y} \subset \mathbb{R}$)
 - $\Rightarrow \hat{y} = f(\mathbf{x}) \Rightarrow$ capture relationship of $(\mathbf{x}, y) \in \mathcal{X} \times \mathcal{Y}$
 - \Rightarrow estimate f via N training examples $S = \{\mathbf{x}_n, y_n\}_{n=1}^N$.
 - \rightarrow Unlike ERM, assume $f(\mathbf{x})$ follows parameterized distribution
 - ⇒ then seek to estimate those parameters.

GPs \Rightarrow nonparametric Bayesian method ($\mathcal{X} \subset \mathbb{R}^p$, $\mathcal{Y} \subset \mathbb{R}$)

- $\Rightarrow \hat{y} = f(\mathbf{x}) \Rightarrow \text{capture relationship of } (\mathbf{x}, y) \in \mathcal{X} \times \mathcal{Y}$
- \Rightarrow estimate f via N training examples $S = \{\mathbf{x}_n, y_n\}_{n=1}^N$.
- ightarrow Unlike ERM, assume $f(\mathbf{x})$ follows parameterized distribution
 - ⇒ then seek to estimate those parameters.
- \rightarrow *Prior* on $\mathbf{f}_{\mathcal{S}} = [f(\mathbf{x}_n), \cdots, f(\mathbf{x}_N)] \Rightarrow \text{Gaussian: } \mathbf{f}_{\mathcal{S}} \sim \mathcal{N}(\mathbf{0}, \mathbf{K}_N)$
 - \Rightarrow Covariance $\mathbf{K}_N = [\kappa(\mathbf{x}_m, \mathbf{x}_n)]_{m,n=1}^{N,N}$ via kernel $\kappa: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$
 - ⇒ Kernel ⇒ prior about distance between points
 - \Rightarrow e.g., Gaussian $\kappa(\mathbf{x}_m, \mathbf{x}_n) = \exp\{-\|\mathbf{x}_m \mathbf{x}_n\|^2/c^2\}$

GPs \Rightarrow nonparametric Bayesian method ($\mathcal{X} \subset \mathbb{R}^p$, $\mathcal{Y} \subset \mathbb{R}$)

- $\Rightarrow \hat{y} = f(\mathbf{x}) \Rightarrow \text{capture relationship of } (\mathbf{x}, y) \in \mathcal{X} \times \mathcal{Y}$
- \Rightarrow estimate f via N training examples $S = \{\mathbf{x}_n, y_n\}_{n=1}^N$.
- \rightarrow Unlike ERM, assume $f(\mathbf{x})$ follows parameterized distribution
 - ⇒ then seek to estimate those parameters.
- \rightarrow Standard GPs \Rightarrow Gaussian noise corrupts $\mathbf{f}_{\mathcal{S}}$ to form obs.
- \rightarrow Observations have prior dist. $\mathbb{P}(\mathbf{y} \mid \mathbf{f}_{\mathcal{S}}) = \mathcal{N}(\mathbf{f}_{\mathcal{S}}, \sigma^2 \mathbf{I})$
 - \Rightarrow where σ^2 is some variance parameter.
- \rightarrow Integrate prior \Rightarrow marginal prob. $\mathbb{P}(\mathbf{y} \mid \mathcal{S}) = \mathcal{N}(\mathbf{0}, \mathbf{K}_N + \sigma^2 \mathbf{I})$

GPs \Rightarrow nonparametric Bayesian method ($\mathcal{X} \subset \mathbb{R}^p$, $\mathcal{Y} \subset \mathbb{R}$)

$$\Rightarrow \hat{y} = f(\mathbf{x}) \Rightarrow$$
 capture relationship of $(\mathbf{x}, y) \in \mathcal{X} \times \mathcal{Y}$

- \Rightarrow estimate f via N training examples $S = \{\mathbf{x}_n, y_n\}_{n=1}^N$.
- → Unlike ERM, assume f(x) follows parameterized distribution ⇒ then seek to estimate those parameters.
- \rightarrow Upon receiving new sample \mathbf{x}_{N+1} , form posterior for \hat{y}_{N+1} as

$$\mathbb{P}(y_{N+1} \mid \mathcal{S} \cup \mathbf{x}_{N+1}) = \mathcal{N}\Big(\boldsymbol{\mu}_{N+1} \mid_{\mathcal{S}}, \boldsymbol{\Sigma}_{N+1} \mid_{\mathcal{S}}\Big)$$

⇒ where the mean and covariance are given by

$$\mu_{N+1 \mid \mathcal{S}} = \mathbf{k}_{\mathcal{S}}(\mathbf{x}_{N+1})[\mathbf{K}_{N} + \sigma^{2}\mathbf{I}]^{-1}\mathbf{y}_{N}$$

$$\Sigma_{N+1 \mid \mathcal{S}} = \kappa(\mathbf{x}_{N+1}, \mathbf{x}_{N+1})$$

$$- \mathbf{k}_{\mathcal{S}}^{T}(\mathbf{x}_{N+1})[\mathbf{K}_{N} + \sigma^{2}\mathbf{I}]^{-1}\mathbf{k}_{\mathcal{S}}(\mathbf{x}_{N+1})$$

 $\Rightarrow \mathbf{k}_{S}(\mathbf{x}) = [\kappa(\mathbf{x}_{1}, \mathbf{x}); \cdots \kappa(\mathbf{x}_{N}, \mathbf{x})] \Rightarrow \text{empirical kernel map}$

Curse of Dimensionality

Computing posterior mean requires:

- \Rightarrow computing empirical kernel map $\mathbf{k}_{\mathcal{S}}(\mathbf{x})$
- \Rightarrow inverting kernel matrix \mathbf{K}_N
- \rightarrow Complexity of former computation is $\mathcal{O}(N)$; the later is $\mathcal{O}(N^3)$
- ightarrow In era of big data and streaming applications: $N
 ightarrow\infty$
 - ⇒ this causes GPs to require infinite complexity in the limit!
- \rightarrow Question: as $N \rightarrow \infty$, how to find close-to-optimal GP?
 - ⇒ with finite memory that's flexible, problem-dependent
 - ⇒ suitable for *online/streaming* settings

Some Context

Memory-reduced GPs \Rightarrow two categories [Rasmussen Ch. 8]

- ⇒ greedy forward selection (Seeger, Csato & Opper, etc.)
- ⇒ variational approx. GP likelihood (Tsitsias, Snelson, etc.)
- → Overarching theme: fix some memory budget M
 - ⇒ "Project" likelihood of additional points onto "subspace"
 - \Rightarrow since *M* unknown a priori, fixing it may cause divergence
- → Goal: memory under control & approximate convergence
 - ⇒ most existing approaches lack consistency guarantees
- → Approach: compress current posterior w.r.t. metric
 - ⇒ allows complexity to grow/shrink via data importance

Online Gaussian Processes

Define time-series of observations as $S_t = \{\mathbf{x}_u, \mathbf{y}_u\}_{u \leq t}$,

 \Rightarrow Rewrite posterior in terms of $\mathcal{S}_t \cup \{\mathbf{x}_{t+1}\}$ as

$$\mu_{t+1 \mid \mathcal{S}_t} = \mathbf{k}_{\mathcal{S}_t}(\mathbf{x}_{t+1})[\mathbf{K}_t + \sigma^2 \mathbf{I}]^{-1} \mathbf{y}_t$$

$$\Sigma_{t+1 \mid \mathcal{S}_t} = \kappa(\mathbf{x}_{t+1}, \mathbf{x}_{t+1})$$

$$- \mathbf{k}_{\mathcal{S}_t}^T(\mathbf{x}_{t+1})[\mathbf{K}_t + \sigma^2 \mathbf{I}]^{-1} \mathbf{k}_{\mathcal{S}_t}(\mathbf{x}_{t+1}).$$

- \rightarrow Kernel dictionary $\mathbf{X}_t := [\mathbf{x}_1; \cdots; \mathbf{x}_t] \in \mathbb{R}^{p \times t}$
 - \Rightarrow grows i.e. $\mathbf{X}_{t+1} = [\mathbf{X}_t; \mathbf{x}_{t+1}] \in \mathbb{R}^{p \times t}$, storing full past $\{\mathbf{x}_u\}_{u \leq t}$.
 - \Rightarrow Define no. of columns in dictionary as *model order M_t*.
 - \Rightarrow GP posterior has model order $M_t = t$.
- \rightarrow Denote posterior of y_t as $\rho_t = \mathbb{P}(y_t \mid \mathcal{S}_{t-1} \cup \mathbf{x}_t)$

Online Gaussian Processes

Suppose posterior is defined by some kernel dict. $\mathbf{D} \in \mathbb{R}^{p \times M}$

- \Rightarrow Rather than \mathbf{X}_t which stacks all past points
- → Then the posterior parameters may be computed as

$$\begin{split} \boldsymbol{\mu}_{t+1 \mid \mathbf{D}} &= \mathbf{k}_{\mathbf{D}}(\mathbf{x}_{t+1}) [\mathbf{K}_{\mathbf{D},\mathbf{D}} + \sigma^2 \mathbf{I}]^{-1} \mathbf{y}_t \\ \boldsymbol{\Sigma}_{t+1 \mid \mathbf{D}} &= \kappa (\mathbf{x}_{t+1}, \mathbf{x}_{t+1}) \\ &- \mathbf{k}_{\mathbf{D}}^T (\mathbf{x}_{t+1}) [\mathbf{K}_{\mathbf{D},\mathbf{D}} + \sigma^2 \mathbf{I}]^{-1} \mathbf{k}_{\mathbf{D}} (\mathbf{x}_{t+1}). \end{split}$$

- \rightarrow kernel matrix $\mathbf{K}_t \Rightarrow \mathbf{K}_{DD}$; empirical kernel map $\mathbf{k}_{\mathcal{S}}(\cdot) \Rightarrow \mathbf{k}_{D}(\cdot)$,
 - $\Rightarrow [\mathbf{K}_{\mathbf{D},\mathbf{D}}]_{mn} = \kappa(\mathbf{d}_m,\mathbf{d}_n), \mathbf{k}_{\mathbf{D}} = [\kappa(\mathbf{d}_1,\cdot);\cdots;\kappa(\mathbf{d}_M,\cdot)]$
 - \Rightarrow dictionary pts. = subset of past obs. $\{\mathbf{d}_m\}_{m=1}^M \subset \{\mathbf{x}_u\}_{u \leq t}$

Compressing the Posterior

Given dictionary $\mathbf{D}_t \in \mathbb{R}^{p \times (M_t)}$ at time t and obs. \mathbf{x}_{t+1}

- $\Rightarrow \text{Compute posterior distribution } \rho_{\mathbf{D}_t} := \mathcal{N}\big(\boldsymbol{\mu}_{t+1 \; \big| \; \mathbf{D}_t}, \boldsymbol{\Sigma}_{t+1 \; \big| \; \mathbf{D}_t}\big)$
- $\rightarrow \,$ Compress by fixing error nbhd. at $\mathcal{N}(\mu_{t+1\,\big|\,\mathbf{D}_t}, \Sigma_{t+1\,\big|\,\mathbf{D}_t})$
 - ⇒ w.r.t. Hellinger metric: easily computable for Gaussians
- \rightarrow for distributions $\nu = \mathcal{N}(\mu_1, \Sigma_1), \lambda = \mathcal{N}(\mu_2, \Sigma_2)$, given as

$$d_{H}(\nu,\lambda) = \sqrt{1 - \frac{|\Sigma_{1}|^{1/4}|\Sigma_{2}|^{1/4}}{|\bar{\Sigma}|}} \exp\left\{-\frac{1}{8}(\mu_{1} - \mu_{2})\bar{\Sigma}^{-1}(\mu_{1} - \mu_{2})\right\}$$

where $\bar{\Sigma} = (\Sigma_1 + \Sigma_2)/2$.

Compressing the Posterior

Given dictionary $\mathbf{D}_t \in \mathbb{R}^{p \times (M_t)}$ at time t and obs. \mathbf{x}_{t+1}

- \Rightarrow Compute posterior distribution $ho_{\mathbf{D}_t} := \mathcal{N} (\mu_{t+1 \; ig|\; \mathbf{D}_t}, \mathbf{\Sigma}_{t+1 \; ig|\; \mathbf{D}_t})$
- $\rightarrow \text{ Compress by fixing error nbhd. at } \mathcal{N}(\mu_{t+1\,\big|\,\mathbf{D}_t}, \Sigma_{t+1\,\big|\,\mathbf{D}_t})$
 - ⇒ w.r.t. Hellinger metric: easily computable for Gaussians
- → Greedily prune w.r.t. Hellinger metric while inside nbhd.
 - ⇒ Accomplished via destructive variant of matching pursuit
 - ⇒ Customized to operate with the Hellinger distance

$$(\boldsymbol{\mu}_{\tilde{\mathbf{D}}_{t+1}}, \boldsymbol{\Sigma}_{\tilde{\mathbf{D}}_{t+1}}, \tilde{\mathbf{D}}_{t+1}) = \mathbf{DHMP}(\boldsymbol{\mu}_{t+1} \, \big| \, \mathbf{D}_{t}, \boldsymbol{\Sigma}_{t+1} \, \big| \, \mathbf{D}_{t}, \tilde{\mathbf{D}}_{t+1}, \boldsymbol{\epsilon}_{t})$$

- \rightarrow Then append latest point: $\mathbf{D}_{t+1} = [\tilde{\mathbf{D}}_{t+1}, \mathbf{x}_{t+1}]$
 - ⇒ details of matching pursuit are messy, left to the paper

Parsimonious Online GPs (POG)

A geometric view

→ Learning update rule

$$\mu_{t+1 \mid \mathbf{D}} = \mathbf{k}_{\mathbf{D}}(\mathbf{x}_{t+1}) [\mathbf{K}_{\mathbf{D},\mathbf{D}} + \sigma^{2} \mathbf{I}]^{-1} \mathbf{y}_{t}$$

$$\Sigma_{t+1 \mid \mathbf{D}} = \kappa(\mathbf{x}_{t+1}, \mathbf{x}_{t+1})$$

$$-\mathbf{k}_{\mathbf{D}}(\mathbf{x}_{t+1})[\mathbf{K}_{\mathbf{D},\mathbf{D}}+\sigma^{2}\mathbf{I}]^{-1}\mathbf{k}_{\mathbf{D}}(\mathbf{x}_{t+1})$$

- →Compress w.r.t. Hellinger metric
 - \Rightarrow causing ϵ error
 - \Rightarrow add latest pt: $\tilde{\mathbf{D}}_{t+1} = [\mathbf{D}_t; \mathbf{x}_t]$
- → Linked to projected gradient
 - ⇒ with hard-thresholding

Banach Space of Gaussian Process Posteriors $\begin{array}{c} \rho_{t+1} \sim (D_{t+1}, \mu_{t+1}, \Sigma_{t+1}) \\ \hline DHMP \\ \rho_{i+1} \sim (\tilde{D}_{t+1}, \tilde{\mu}_{t+1}, \tilde{\Sigma}_{t+1}) \\ \hline \rho_{i} \sim (D_{n}, \mu_{n}, \Sigma_{i}) \end{array}$

Balancing Consistency and Memory

Theorem

POG attains the following posterior consistency results almost surely:

- (i) for decreasing budget $\epsilon_t \to 0$, $\mathbb{P}_{\Pi}\{d_H(\rho_{\mathbf{D}_t}, \rho_{\mathbf{D}_{t-1}}) < \alpha \mid \mathcal{S}_t\} \to 1$
- (ii) for fixed budget $\epsilon_t = \epsilon > 0$, $\mathbb{P}_{\Pi}\{d_H(\rho_{\mathbf{D}_t}, \rho_{\mathbf{D}_{t-1}}) < \gamma + \epsilon \mid \mathcal{S}_t\} \to 1$

For compression decreasing to null ⇒ exact convergence

⇒ for constant compression budget, converge to nbhd.

Balancing Consistency and Memory

Theorem

Suppose POG is run with constant budget $\epsilon>0$. Then the model order M_t of the posterior distributions $\rho_{\mathbf{D}_t}$ remains finite for all t, and the limiting distribution ρ_{∞} has finite model complexity M^{∞}

Merit of constant compression budget: provable finite memory

- ⇒ characterizing tradeoff of memory/consistency is difficult
- ⇒ depends on kernel hyperparameters, feature space radius
- \rightarrow Remaining open problem: how to establish this dependence

Real Data: LIDAR

Posterior mean square error & actual interpolation

- ⇒ on LIDAR data set (nonlinear regression problem)
- ⇒ POG attains performance comparable to dense GP

Real Data: LIDAR

Evolution of Hellinger metric over time between sparse/dense GP

- ⇒ nearly identical
- → but POG reduces complexity by orders of magnitude
 - ⇒ by kicking out information extraneous to the posterior
 - ⇒ has flexible complexity via convergence criterion

Gaussian processes ⇒ often used in autonomy/robotics

- \Rightarrow curse of dimensionality: complexity \approx sample size
- ⇒ a challenge common to nonparametric/Bayesian methods
- → Precludes use in online settings
- → Existing memory-reduction: proj. pts. to fixed size subspace
 ⇒ lack convergence quarantees, in contrast to POG
- → POG trades off consistency and memory
- → Experiments ⇒ POG and dense GP exhibit similar behavior
- → Future directions: GP bandits, safe low-latency MPC

References

- ⇒ A. Koppel, "Consistent Online Gaussian Process Regression Without the Sample Complexity Bottleneck," IEEE American Control Conference, July. 2019.
- → A. Koppel, A.B. Singh, K. Rajawat, and B.M. Sadler, "Optimally Compressed Online Nonparametric Learning," in IEEE Signal Processing Magazine (submitted), 2019.