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Reinforcement Learning

I Reinforcement learning: data-driven control
⇒ unknown system model/cost function
⇒ parameterize policy/cost as stat. model for high dimensional spaces

I Recent successes:
⇒ AlphaGo Zero [Silver et al. ′17]
⇒ Bipedal walker on terrain [Heess et al. ′17]
⇒ Personalized web services [Theocharous et al. ′15]
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Problem Formulation

I Markov decision process (MDP) (S,A,P, R, γ)

⇒ State space S, action space A (high-dim. or even continuous)
⇒Markov transition kernel P(s′

∣∣ s, a) : S ×A → P(S)

⇒ Reward R : S ×A → R, discount factor γ ∈ (0, 1)

I Stochastic policy π : S → P(A), i.e., at ∼ π(·
∣∣ st)

I Infinite-horizon setting value function:

V (s) = E
( ∞∑
t=0

γt ·R(st, at)

∣∣∣∣ s0 = s

)
,

I Goal: find {at = π(st)} to maximize Vπ(s) := E[V (s)
∣∣ a ∼ π(s)]

I maxπ∈Π Vπ(s) where Π is some family of distributions
⇒ E.g., Gaussian π = πθ w/ θ ∈ Rd ⇒ πθ(·

∣∣ s) = N (φ(s)>θ, σ2)

⇒ Define action-state value (Q) function Qπ(s, a) = E[Vπ(s)
∣∣ a0 = a]

Zhang, Koppel, Zhu, Başar Policy Search in Reinforcement Learning: Advances Through Non-Convex Optimization 3



Literature Landscape

Policy Search Dynamic Programming

Policy Gradient Method

REINFORCE

Natural Gradient

Trust Region Policy Opt.

Proximal Policy Opt.

Value Iteration

Q Learning

Deep Q Networks

Double Deep Q NetsSoft Q Learning

Policy Iteration
Actor-Critic

Deep Det. Policy Grad.

AlphaGO (Zero)
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Context

I Pros of policy gradient [Silver ′14]:
I Better convergence properties

(How much better?)

I Effective in high-dimensional or continuous action spaces
I Can learn stochastic policies

I Cons of policy gradient [Silver ′14]:
I Typically converge to a local rather than global optimum

(Really?)
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Context

I Pros of policy gradient [Silver ′14]:
I Better convergence properties (How much better?)
I Effective in high-dimensional or continuous action spaces
I Can learn stochastic policies

I Cons of policy gradient [Silver ′14]:
I Typically converge to a local rather than global optimum (Really?)

I Contribution: global convergence of policy gradient methods
⇒ for discounted infinite-horizon setting w/ iteration complexity
⇒ conditions for converging to approximate local extrema

I Contrast w/ asymptotics via ODEs [Kushner & Yin ′76; Borkar ′08]
⇒ Correct claims of attaining local extrema via nonconvex opt.
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Policy Gradient Theorem

I Policy gradient formula [Sutton ′00]

∇J(θ) =
1

1− γ
· E(s,a)∼ρθ(·,·)

[
∇ log πθ(a

∣∣ s) ·Qπθ (s, a)
]
.

⇒ ρθ(s, a) ⇒ ergodic dist. of Markov chain for fixed policy:

ρθ(s, a) = (1− γ)

∞∑
t=0

γtp(st = s
∣∣ s0, πθ) · πθ(a

∣∣ s).

I Stochastic gradient ascent (SGA): θk+1 = θk + αk∇̂J(θk).
I Unbiasedly sampling ∇̂J(θ) is challenging, since this requires
⇒ Q̂πθ (s, a) unbiasedly estimate Qπθ (s, a)

⇒ (s, a) drawn from ρθ(·, ·)
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Random-horizon Policy Gradient (RPG)

I Unbiasedly estimate Qπθ (s, a) [Paternain 2018]:
⇒ Draw T ′ ∼ Geom(1− γ1/2), i.e., P (T ′ = t) = (1− γ1/2)γt/2

⇒ Rollout a trajectory (s0, a0, s1, · · · , sT ′ , aT ′)

Q̂πθ (s, a) =

T ′∑
t=0

γt/2 ·R(st, at)
∣∣ s0 = s, a0 = a

⇒ Benefit of γ1/2: almost sure (a.s.) boundedness of Q̂πθ (s, a)

I Draw (s, a) from ρθ(·, ·):
⇒ Draw T ∼ Geom(1− γ)
⇒ Rollout a trajectory (s0, a0, s1, · · · , sT , aT )
⇒ Evaluate the gradient at (sT , aT )

∇̂J(θ) =
1

1− γ
· Q̂πθ (sT , aT ) · ∇ log[πθ(aT

∣∣ sT )]

I Random-horizon Policy Gradient (RPG) update:

θk+1 = θk + αk∇̂J(θk)
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Convergence Guarantee

I Asymptotic convergence to stationary points:

Theorem (Convergence with Diminishing Stepsize)
Let {θk}k≥0 be the sequence of parameters of the policy πθk given by RPG.
If the stepsize {αk} satisfies

∞∑
k=0

αk =∞,
∞∑
k=0

α2
k <∞,

then we have

lim
k→∞

‖∇J(θk)‖ = 0, a.s.

⇒ Recover the result obtained by ODE method
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Convergence Guarantee

I Convergence rate with diminishing stepsize

Theorem (Rate with Diminishing Stepsize)
Let {θk}k≥0 be the sequence of parameters of the policy πθk given by
Algorithm 3. Let the stepsize be αk = k−a where a ∈ (0, 1). Let

Kε = min
{
k : inf

0≤m≤k
E[‖∇J(θm)‖2] ≤ ε

}
≤ O(ε−

1
2 )

⇒ Recover the O(1/
√
k) optimal rate of SGA for nonconvex opt.
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Convergence Guarantee

I Convergence with constant stepsize

Corollary (Convergence with Constant Stepsize)
Let {θk}k≥0 be the sequence of parameters of the policy πθk given by
Algorithm 3. Let the stepsize be αk = α > 0. Then, there exists some
constant C > 0 such that

1

k

k∑
m=1

E[‖∇J(θm)‖2] ≤ O
(

1

kα
+ C · α

)
.

⇒ Recover the conv. of SGA to the neighborhood of stationary points
⇒ Trade-off between the conv. speed and the accuracy by choosing α
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Pendulum Experiments

I Compare with REINFORCE [Williams ′92]
⇒ fixed Q function horizon estimate

I Each curve 30 times with mean and ±1.0 standard deviation
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Additional Assumptions

I Can we do better? Link R & πθ to 2nd-order structure of value func.

Assumption

I Positive/negative reward: |R(s, a)| ∈ [LR, UR] uniformly with LR > 0.
I Fisher information matrix induced by πθ(·

∣∣ s) is positive-definite

G(θ) :=

∫
S×A

ρθ(s, a) · ∇ log πθ(a
∣∣ s) · [∇ log πθ(a

∣∣ s)]>dads � LI · I.
I Smoothness: there exist ρΘ > 0 and CΘ <∞ s.t. for any (s, a) ∈ S ×A∥∥∇2 log πθ1(a

∣∣ s)−∇2 log πθ2(a
∣∣ s)∥∥ ≤ ρΘ · ‖θ1 − θ2‖, for all θ1, θ2,∥∥∇2 log πθ(a

∣∣ s)∥∥ ≤ CΘ, for all θ.

I Can be easily satisfied in practice.
⇒ motivates reward offset via nonconvex opt ⇒ common in practice
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Modified RPG Algorithm

Algorithm 1 MRPG: Modified Random-horizon Policy Gradient Algorithm
Input: s0, θ0, and the gradient type♦, initialize k ← 0, return set Θ̂∗ ← ∅.
Repeat:

Draw Tk+1 from Geom(1− γ), and draw a0 ∼ πθk(·
∣∣ s0).

for all t = 0, · · · , Tk+1 − 1 do
Simulate st+1 ∼ P(·

∣∣ st, at) and at+1 ∼ πθk(·
∣∣ st+1).

end for
Calculate the stochastic gradient gk ← EvalPG(sTk+1

, aTk+1
, θk,♦).

if (k mod kthre) = 0 then

Θ̂∗ ← Θ̂∗ ∪ {θk}, θk+1 ← θk + β · gk
else

θk+1 ← θk + α · gk
end if
Update the iteration counter k = k + 1.

Until Convergence
return θ uniformly at random from the set Θ̂∗.
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Improved Convergence Guarantee

Definition (Second-order Stationary Point)
A point θ is an εg, εh-second order stationary point with εg, εh > 0, if

‖∇J(θ)‖ ≤ εg, ∇2J(θ) � εh · I.

I Approximate local optima if no degenerate saddle exists

Theorem (Improved Convergence)
Let {θk}k≥0 be the sequence of parameters of the policy πθk given by the
MRPG updates, i.e., Algorithm 1, with certain parameters chosen, then θk
converges to an (ε,

√
ε)-second order stationary point w/ prob. (1− δ) after

O
((ρ3/2Lε−9

δη

)
log
(`gL
εηρ

))
,

steps. If no degenerate saddle exists, attain locally optimal policy.
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Pendulum Experiments

I Compare with REINFORCE [Williams ′92]
I Each curve 30 times with mean and ±1.0 standard deviation
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I Mixed reward setting: adding a constant 10.0
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Conclusion

I Policy gradient method ⇒ foundation of many RL methods
⇒ its global convergence and limiting properties not well-understood

I We derive iteration complexity from nonconvex opt perspective
⇒ of a new version that uses random rollout horizons for Q function
⇒ establish conditions under to attain approximate local extrema

I Experimentally observe these properties of policy search on pendulum
⇒ solid foundation to derive accelerated & variance-reduced methods
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Problem Formulation

I Objective: Find the policy that maximizes the value given s0

max
π∈Π

Vπ(s0).

I Parameterized policy π = πθ with θ ∈ Rd, e.g., Gaussian policy

πθ(·
∣∣ s) = N (φ(s)>θ, σ2)

I A nonconvex optimization problem

max
θ

J(θ) := Vπθ (s0).

I Regularity conditions of the reward R and πθ
Assumption

I Boundedness: |R(s, a)| ∈ [0, UR] for any (s, a) ∈ S ×A.
I Smoothness: πθ is differentiable with respect to θ, and∇ log πθ(a

∣∣ s) is
L-Lipschitz and has bounded norm, i.e., for all (s, a) ∈ S ×A,

‖∇ log πθ1(a
∣∣ s)−∇ log πθ2(a

∣∣ s)‖ ≤ L · ‖θ1 − θ2‖, for all θ1, θ2,

‖∇ log πθ(a
∣∣ s)‖ ≤ BΘ, for all θ.
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Related Work

I Policy gradient theorems [Sutton ′00; Silver et al. ′14]
I Classical algorithms: REINFORCE [Williams ′92], Natural policy

gradient [Kakade ′02], deterministic policy gradient [Silver et al. ′14]
I Tremendous empirical works, especially with deep neural nets

[Lillicrap et al. ′15; Mnih et al. ′16]
I Actor-critic algorithms [Konda et al. ′00; Peters et al. ′09; Mnih et al.
′16] to reduce the variance, two-timescale algorithms

I Recently, Stochastic Variance-Reduced Policy Gradient [Papini et al.
′18], from an optimization perspective

I However, none of them established global convergence under a
discounted infinite-horizon setting, with iteration complexity
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Challenges

I Unbiased estimate of policy gradient is elusive to obtain
⇒Monte-Carlo for finite-horizon, e.g., REINFORCE, creates bias
⇒ Online actor-critic has both bias and correlated noise from the critic

I Mathematic tool is very general, but the results are limited
⇒ Stochastic approx. & ODE method [Kushner & Yin ′76; Borkar ′08]
⇒Mostly asymptotic convergence only, i.e., when t→∞

I Understanding gap from a nonconvex optimization perspective
⇒ First-order algorithms are not guaranteed to find local optima
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Algorithms

Algorithm 2 EstQ: Unbiasedly Estimating Q-function

Input: s, a, and θ. Initialize Q̂← 0, s0 ← s, and a0 ← a0.
Draw T from the geometric distribution Geom(1−γ1/2), i.e., P (T = t) =
(1− γ1/2)γt/2.
for all t = 0, · · · , T − 1 do

Collect and add the instantaneous reward R(st, at) to Q̂, Q̂ ← Q̂ +
γt/2 ·R(st, at).
Simulate the next state st+1 ∼ P(·

∣∣ st, at) and action at+1 ∼
π(·
∣∣ st+1).

end for
Collect R(sT , aT ) by Q̂← Q̂+ γT/2 ·R(sT , aT ).
return Q̂.
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Algorithms

Algorithm 3 RPG: Random-horizon Policy Gradient Algorithm

Input: s0 and θ0, initialize k ← 0.
Repeat:

Draw Tk+1 from the geometric distribution Geom(1− γ).
Draw a0 ∼ πθk(·

∣∣ s0)
for all t = 0, · · · , Tk+1 − 1 do

Simulate the next state st+1 ∼ P(·
∣∣ st, at) and action at+1 ∼

πθk(·
∣∣ st+1).

end for
Obtain an estimate Q̂πθk (sTk+1

, aTk+1
)← EstQ(sTk+1

, aTk+1
, θk).

Perform stochastic policy gradient

θk+1 ← θk +
αk

1− γ
· Q̂πθk (sTk+1

, aTk+1
) · ∇ log[πθk(aTk+1

∣∣ sTk+1
)]

Update the iteration counter k ← k + 1.
Until Convergence
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Theoretical Results

Theorem (Unbiasedness)
For any θ and (s, a), Q̂πθ (s, a) and ∇̂J(θ) are unbiased estimates of
Qπθ (s, a) and∇J(θ), respectively, i.e.,

E[Q̂πθ (s, a)] = Qπθ (s, a), E[∇̂J(θ)] = ∇J(θ).

I The gradient and its estimate have other nice properties

Lemma (Properties of RPG)

I ∇J(θ) is bounded: ‖∇J(θ)‖ ≤ BΘ · UR/(1− γ)2 and is LΘ-Lipschitz:

‖∇J(θ1)−∇J(θ2)‖ ≤ LΘ · ‖θ1 − θ2‖

for some LΘ(UR, L,BΘ, γ).

I ∇̂J(θ) is almost surely bounded:

‖∇̂J(θ)‖ ≤ BΘUR
(1− γ)(1− γ1/2)

.
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Nonconvex Perspective

I Can we do better? More than stationary points?

I A fundamental question in nonconvex opt.: Can local optima be
achieved using (stochastic) first-order methods, e.g., SGD?
⇒ Yes!
⇒ Key: if one can escape saddle points quickly

I Observed in many empirical results, e.g., in training neural nets
[Bengio et al. ′14; Goodfellow et al. ′14]

I Recent theoretical advances [Ge et al. ′15; Lee et al. ′16; Jin et al. ′17]
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Nonconvex Perspective

I Key idea:
⇒ The noise/perturbation of SGA is isotropic [Jin et al. ′15, ′17]

I But the noise of SPG is not controlled in RL
I Saddle-escaping without isotropic noise [Daneshmand et al. ′18]
I But need Correlated Negative Curvature (CNC) conditon
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Nonconvex Perspective

Assumption (CNC Condition (Daneshmand et al. ′18))
Let vθ be the eigenvector corresponding to the maximum eigenvalue of the
Hessian matrixH(θ). The stochastic gradient ∇̂J(θ) satisfies the CNC
condition, if the second moment of its projection along the direction vθ is
uniformly bounded away from zero, i.e.,

∃η > 0, s.t., for all θ ∈ Θ, E
{

[v>θ ∇̂J(θ)]2
}
> η.

I Does our SPG ∇̂J(θ) satisfy CNC condition?

I Yes! (under certain conditions)
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Properties of RPGs

I Strict positive/negative reward and Q-function amplify the variance

∇̂J(θ) =
1

1− γ
· Q̂πθ (sT , aT ) · ∇ log[πθ(aT

∣∣ sT )].

I Propose SPG with baselines

∇̌J(θ) =
1

1− γ
· [Q̂πθ (sT , aT )− V̂πθ (sT )] · ∇ log[πθ(aT

∣∣ sT )],

∇̃J(θ) =
1

1− γ
· [R(sT , aT ) + γV̂πθ (s

′
T )− V̂πθ (sT )] · ∇ log[πθ(aT

∣∣ sT )].

Lemma
The stochastic policy gradients ∇̌J(θ) and ∇̃J(θ) are also unbiased
estimate of∇J(θ), i.e., E[∇̌J(θ)] = E[∇̃J(θ)] = ∇J(θ).

Lemma
All the three stochastic policy gradients ∇̂J(θ), ∇̌J(θ), and ∇̃J(θ) satisfy
the correlated negative curvature condition.
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Zhang, Koppel, Zhu, Başar Policy Search in Reinforcement Learning: Advances Through Non-Convex Optimization 48



Properties of RPGs

I Strict positive/negative reward and Q-function amplify the variance

∇̂J(θ) =
1

1− γ
· Q̂πθ (sT , aT ) · ∇ log[πθ(aT

∣∣ sT )].

I Propose SPG with baselines

∇̌J(θ) =
1

1− γ
· [Q̂πθ (sT , aT )− V̂πθ (sT )] · ∇ log[πθ(aT

∣∣ sT )],

∇̃J(θ) =
1

1− γ
· [R(sT , aT ) + γV̂πθ (s

′
T )− V̂πθ (sT )] · ∇ log[πθ(aT

∣∣ sT )].

Lemma
The stochastic policy gradients ∇̌J(θ) and ∇̃J(θ) are also unbiased
estimate of∇J(θ), i.e., E[∇̌J(θ)] = E[∇̃J(θ)] = ∇J(θ).

Lemma
All the three stochastic policy gradients ∇̂J(θ), ∇̌J(θ), and ∇̃J(θ) satisfy
the correlated negative curvature condition.
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Simulations

I Environment: Pendulum in the OpenAI Gym [Brockman et al. ′16]

I State: st = (cos(θt), sin(θt), θ̇t)
>; action at ∈ [−20, 20] the joint effort

I Reward R(st, at) ∈ [−17.1736044,−0.5]:

R(st, at) := −(θ2 + 0.1 ∗ θ̇2 + 0.001 ∗ a2
t )−0.5,

I Gaussian Policy: πθ truncated over [−20, 20] and parameterized by

πθ(·
∣∣ s) = N (µθ(s), σ

2),

where µθ(s) is a neural network with two hidden layers
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Beyond Vanilla Policy Gradient...

I Natural policy gradient [Kakade ′02] performs superbly in practice

∇̄J(θ) := G(θ)−1 · ∇J(θ),

where G(θ) is the Fisher information matrix

I Stochastic Quasi-Newton method from an optimization perspective

Theorem (Global Convergence of Natural PG (Informal))
Let {θk}k≥0 be the sequence of parameters of the policy πθk given by the
Natural PG, then θk preserves the global convergence property of SPG to
first-order stationary points.

I What about convergence to second-order stationary points?
I Does G(θ) contain enough 2nd-order information to escape saddles?
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Concluding Remarks

I The global convergence property of PG methods is not well-understood

I Propose an unbiased SPG estimate, facilitating a nonconvex perspective

I Justify that simple conditions may indeed lead to local optimal policies,
both theoretically and empirically

I Summary & Future Work

1st-order Stationary Points 2nd-order Stationary Points

Vanilla SPG
X

Re-discover the asymptotic a.s. conv.;
Establish conv. rate

X
Prove CNC condition;

Establish conv. rate

Natural PG
X

Establish both asymptotic
a.s. conv. and conv. rate

?

Thank You!
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