

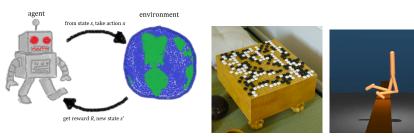
Policy Search in Reinforcement Learning: Advances Through Non-Convex Optimization

$\begin{array}{ccc} {\rm Kaiqing\ Zhang^{\star}\ Alec\ Koppel^{\dagger}\ \ Hao\ Zhu^{\ddagger}\ \ Tamer\ Başar^{\star}} \\ {}^{\star}{\rm UIUC} & {}^{\dagger}{\rm ARL} & {}^{\ddagger}{\rm UT\ Austin} \end{array}$

Estimation and Learning in Stochastic Systems IEEE Conference on Information Science and Systems Mar. 21, 2019

Reinforcement Learning

- Reinforcement learning: data-driven control
 - \Rightarrow unknown system model/cost function
 - \Rightarrow parameterize policy/cost as stat. model for high dimensional spaces
- Recent successes:
 - \Rightarrow AlphaGo Zero [Silver et al. '17]
 - \Rightarrow Bipedal walker on terrain [Heess et al. '17]
 - \Rightarrow Personalized web services [Theocharous et al. '15]



- Markov decision process (MDP) $(S, A, \mathbb{P}, R, \gamma)$
 - \Rightarrow State space S, action space A (high-dim. or even continuous)
 - $\Rightarrow \text{Markov transition kernel } \mathbb{P}(s' \mid s, a) : \mathcal{S} \times \mathcal{A} \rightarrow \mathcal{P}(\mathcal{S})$
 - \Rightarrow Reward $R: S \times A \rightarrow \mathbb{R}$, discount factor $\gamma \in (0, 1)$
- Stochastic policy $\pi : S \to \mathcal{P}(\mathcal{A})$, i.e., $a_t \sim \pi(\cdot \mid s_t)$
- Infinite-horizon setting value function:

$$V(s) = \mathbb{E}\bigg(\sum_{t=0}^{\infty} \gamma^t \cdot R(s_t, a_t) \, \bigg| \, s_0 = s\bigg),$$

- Goal: find $\{a_t = \pi(s_t)\}$ to maximize $V_{\pi}(s) := \mathbb{E}[V(s) \mid a \sim \pi(s)]$
- $\max_{\pi \in \Pi} V_{\pi}(s)$ where Π is some family of distributions

 $\Rightarrow \text{E.g., Gaussian } \pi = \pi_\theta \text{ w/ } \theta \in \mathbb{R}^d \ \Rightarrow \pi_\theta(\cdot \,\big|\, s) = \mathcal{N}(\phi(s)^\top \theta, \sigma^2)$

 \Rightarrow Define action-state value (Q) function $Q_{\pi}(s, a) = \mathbb{E}[V_{\pi}(s) \mid a_0 = a]$

Policy Search Dynamic Programming

Policy Gradient Metho	od Policy Iteration	Value Iteration
REINFORCE	Actor-Critic	Q Learning
Natural Gradient D	eep Det. Policy Gra	ad. Deep Q Networks
Trust Region Policy Opt	Soft Q Learning	Double Deep Q Nets
Proximal Policy Opt	AlphaGO (Zero)	

Policy Search Dynamic Programming

 Policy Gradient Method
 Value Iteration

 REINFORCE
 Policy Iteration

 Natural Gradient
 Deep Det. Policy Grad.
 Deep Q Networks

 Trust Region Policy Opt.
 Soft Q Learning
 Double Deep Q Nets

 Proximal Policy Opt.
 AlphaGO (Zero)
 Double Deep Q Nets

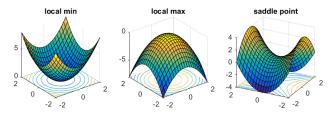
- Pros of policy gradient [Silver '14]:
 - Better convergence properties
 - Effective in high-dimensional or continuous action spaces
 - Can learn stochastic policies
- Cons of policy gradient [Silver '14]:
 - ► Typically converge to a local rather than global optimum

Context

- Pros of policy gradient [Silver '14]:
 - Better convergence properties
 - ► Effective in high-dimensional or continuous action spaces
 - Can learn stochastic policies
- Cons of policy gradient [Silver '14]:
 - Typically converge to a local rather than global optimum
- (Really?)

(How much better?)

 \Rightarrow First-order algorithms are not guaranteed to find local optima



- Pros of policy gradient [Silver '14]:
 - Better convergence properties

(How much better?)

- Effective in high-dimensional or continuous action spaces
- Can learn stochastic policies
- Cons of policy gradient [Silver '14]:
 - ► Typically converge to a local rather than global optimum (Really?)

Contribution: global convergence of policy gradient methods

- \Rightarrow for discounted infinite-horizon setting w/ iteration complexity
- \Rightarrow conditions for converging to approximate local extrema
- Contrast w/ asymptotics via ODEs [Kushner & Yin '76; Borkar '08]
 ⇒ Correct claims of attaining local extrema via nonconvex opt.

► Policy gradient formula [Sutton '00]

$$\nabla J(\theta) = \frac{1}{1 - \gamma} \cdot \mathbb{E}_{(s,a) \sim \rho_{\theta}(\cdot, \cdot)} \big[\nabla \log \pi_{\theta}(a \mid s) \cdot Q_{\pi_{\theta}}(s, a) \big].$$

 $\Rightarrow \rho_{\theta}(s,a) \ \Rightarrow$ ergodic dist. of Markov chain for fixed policy:

$$\rho_{\theta}(s,a) = (1-\gamma) \sum_{t=0}^{\infty} \gamma^t p(s_t = s \mid s_0, \pi_{\theta}) \cdot \pi_{\theta}(a \mid s).$$

► Policy gradient formula [Sutton '00]

$$\nabla J(\theta) = \frac{1}{1 - \gamma} \cdot \mathbb{E}_{(s,a) \sim \rho_{\theta}(\cdot, \cdot)} \big[\nabla \log \pi_{\theta}(a \mid s) \cdot Q_{\pi_{\theta}}(s, a) \big].$$

 $\Rightarrow \rho_{\theta}(s,a) \ \Rightarrow$ ergodic dist. of Markov chain for fixed policy:

$$\rho_{\theta}(s,a) = (1-\gamma) \sum_{t=0}^{\infty} \gamma^t p(s_t = s \mid s_0, \pi_{\theta}) \cdot \pi_{\theta}(a \mid s).$$

• Stochastic gradient ascent (SGA): $\theta_{k+1} = \theta_k + \alpha_k \hat{\nabla} J(\theta_k)$.

► Policy gradient formula [Sutton '00]

$$\nabla J(\theta) = \frac{1}{1 - \gamma} \cdot \mathbb{E}_{(s,a) \sim \rho_{\theta}(\cdot, \cdot)} \big[\nabla \log \pi_{\theta}(a \mid s) \cdot Q_{\pi_{\theta}}(s, a) \big].$$

 $\Rightarrow \rho_{\theta}(s,a) \ \Rightarrow$ ergodic dist. of Markov chain for fixed policy:

$$\rho_{\theta}(s,a) = (1-\gamma) \sum_{t=0}^{\infty} \gamma^t p(s_t = s \mid s_0, \pi_{\theta}) \cdot \pi_{\theta}(a \mid s).$$

- Stochastic gradient ascent (SGA): $\theta_{k+1} = \theta_k + \alpha_k \hat{\nabla} J(\theta_k)$.
- Unbiasedly sampling $\hat{\nabla} J(\theta)$ is challenging, since this requires $\Rightarrow \hat{Q}_{\pi_{\theta}}(s, a)$ unbiasedly estimate $Q_{\pi_{\theta}}(s, a)$ $\Rightarrow (s, a)$ drawn from $\rho_{\theta}(\cdot, \cdot)$

- Unbiasedly estimate $Q_{\pi_{\theta}}(s, a)$ [Paternain 2018]:
 - \Rightarrow Draw $T' \sim \text{Geom}(1 \gamma^{1/2})$, i.e., $P(T' = t) = (1 \gamma^{1/2})\gamma^{t/2}$
 - \Rightarrow Rollout a trajectory $(s_0, a_0, s_1, \cdots, s_{T'}, a_{T'})$

$$\hat{Q}_{\pi_{\theta}}(s,a) = \sum_{t=0}^{T'} \gamma^{t/2} \cdot R(s_t, a_t) \, \big| \, s_0 = s, a_0 = a$$

- Unbiasedly estimate $Q_{\pi_{\theta}}(s, a)$ [Paternain 2018]:
 - \Rightarrow Draw $T' \sim \text{Geom}(1 \gamma^{1/2})$, i.e., $P(T' = t) = (1 \gamma^{1/2})\gamma^{t/2}$
 - \Rightarrow Rollout a trajectory $(s_0, a_0, s_1, \cdots, s_{T'}, a_{T'})$

$$\hat{Q}_{\pi_{\theta}}(s, a) = \sum_{t=0}^{T'} \gamma^{t/2} \cdot R(s_t, a_t) \, \big| \, s_0 = s, a_0 = a$$

 \Rightarrow Benefit of $\gamma^{1/2}:$ almost sure (a.s.) boundedness of $\hat{Q}_{\pi_{\theta}}(s,a)$

- Unbiasedly estimate $Q_{\pi_{\theta}}(s, a)$ [Paternain 2018]:
 - \Rightarrow Draw $T' \sim \text{Geom}(1 \gamma^{1/2})$, i.e., $P(T' = t) = (1 \gamma^{1/2})\gamma^{t/2}$
 - \Rightarrow Rollout a trajectory $(s_0, a_0, s_1, \cdots, s_{T'}, a_{T'})$

$$\hat{Q}_{\pi_{\theta}}(s,a) = \sum_{t=0}^{T'} \gamma^{t/2} \cdot R(s_t, a_t) \, \big| \, s_0 = s, a_0 = a$$

 \Rightarrow Benefit of $\gamma^{1/2}$: almost sure (a.s.) boundedness of $\hat{Q}_{\pi_{\theta}}(s, a)$

- Draw (s, a) from $\rho_{\theta}(\cdot, \cdot)$:
 - \Rightarrow Draw $T \sim \text{Geom}(1 \gamma)$
 - \Rightarrow Rollout a trajectory $(s_0, a_0, s_1, \cdots, s_T, a_T)$
 - \Rightarrow Evaluate the gradient at (s_T, a_T)

$$\hat{\nabla}J(\theta) = \frac{1}{1-\gamma} \cdot \hat{Q}_{\pi_{\theta}}(s_T, a_T) \cdot \nabla \log[\pi_{\theta}(a_T \mid s_T)]$$

- Unbiasedly estimate $Q_{\pi_{\theta}}(s, a)$ [Paternain 2018]:
 - \Rightarrow Draw $T' \sim \text{Geom}(1 \gamma^{1/2})$, i.e., $P(T' = t) = (1 \gamma^{1/2})\gamma^{t/2}$
 - \Rightarrow Rollout a trajectory $(s_0, a_0, s_1, \cdots, s_{T'}, a_{T'})$

$$\hat{Q}_{\pi_{\theta}}(s,a) = \sum_{t=0}^{T'} \gamma^{t/2} \cdot R(s_t, a_t) \, \big| \, s_0 = s, a_0 = a$$

 \Rightarrow Benefit of $\gamma^{1/2}$: almost sure (a.s.) boundedness of $\hat{Q}_{\pi_{\theta}}(s, a)$

- Draw (s, a) from $\rho_{\theta}(\cdot, \cdot)$:
 - \Rightarrow Draw $T \sim \text{Geom}(1 \gamma)$
 - \Rightarrow Rollout a trajectory $(s_0, a_0, s_1, \cdots, s_T, a_T)$
 - \Rightarrow Evaluate the gradient at (s_T, a_T)

$$\hat{\nabla}J(\theta) = \frac{1}{1-\gamma} \cdot \hat{Q}_{\pi_{\theta}}(s_T, a_T) \cdot \nabla \log[\pi_{\theta}(a_T \mid s_T)]$$

► Random-horizon Policy Gradient (RPG) update:

$$\theta_{k+1} = \theta_k + \alpha_k \hat{\nabla} J(\theta_k)$$

Asymptotic convergence to stationary points:

Theorem (Convergence with Diminishing Stepsize)

Let $\{\theta_k\}_{k\geq 0}$ be the sequence of parameters of the policy π_{θ_k} given by RPG. If the stepsize $\{\alpha_k\}$ satisfies

$$\sum_{k=0}^{\infty} \alpha_k = \infty, \quad \sum_{k=0}^{\infty} \alpha_k^2 < \infty,$$

then we have

$$\lim_{k \to \infty} \|\nabla J(\theta_k)\| = 0, \ a.s.$$

 \Rightarrow Recover the result obtained by ODE method

• Convergence rate with diminishing stepsize

Theorem (Rate with Diminishing Stepsize)

Let $\{\theta_k\}_{k\geq 0}$ be the sequence of parameters of the policy π_{θ_k} given by Algorithm 3. Let the stepsize be $\alpha_k = k^{-a}$ where $a \in (0, 1)$. Let

$$K_{\epsilon} = \min\left\{k : \inf_{0 \le m \le k} \mathbb{E}[\|\nabla J(\theta_m)\|^2] \le \epsilon\right\} \le \mathcal{O}(\epsilon^{-\frac{1}{2}})$$

 \Rightarrow Recover the $O(1/\sqrt{k})$ optimal rate of SGA for nonconvex opt.

• Convergence with constant stepsize

Corollary (Convergence with Constant Stepsize)

Let $\{\theta_k\}_{k\geq 0}$ be the sequence of parameters of the policy π_{θ_k} given by Algorithm 3. Let the stepsize be $\alpha_k = \alpha > 0$. Then, there exists some constant C > 0 such that

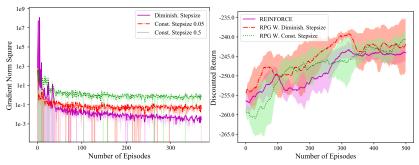
$$\frac{1}{k}\sum_{m=1}^{k}\mathbb{E}[\|\nabla J(\theta_m)\|^2] \leq O\bigg(\frac{1}{k\alpha} + C\cdot \alpha\bigg).$$

 $\Rightarrow \text{Recover the conv. of SGA to the neighborhood of stationary points} \\\Rightarrow \text{Trade-off between the conv. speed and the accuracy by choosing } \alpha$

► Compare with REINFORCE [Williams '92]

\Rightarrow fixed Q function horizon estimate

• Each curve 30 times with mean and ± 1.0 standard deviation



- ► Can we do better? Link $R \& \pi_{\theta}$ to 2nd-order structure of value func. Assumption
 - Positive/negative reward: $|R(s, a)| \in [L_R, U_R]$ uniformly with $L_R > 0$.
 - Fisher information matrix induced by $\pi_{\theta}(\cdot \mid s)$ is positive-definite

$$\boldsymbol{G(\theta)} := \int_{\mathcal{S} \times \mathcal{A}} \rho_{\theta}(s, a) \cdot \nabla \log \pi_{\theta}(a \mid s) \cdot \left[\nabla \log \pi_{\theta}(a \mid s) \right]^{\top} dads \succeq L_{I} \cdot \boldsymbol{I}.$$

• Smoothness: there exist $\rho_{\Theta} > 0$ and $C_{\Theta} < \infty$ s.t. for any $(s, a) \in S \times A$

$$\begin{split} \left\| \nabla^2 \log \pi_{\theta^1}(a \, \big| \, s) - \nabla^2 \log \pi_{\theta^2}(a \, \big| \, s) \right\| &\leq \rho_{\Theta} \cdot \|\theta^1 - \theta^2\|, \text{for all } \theta^1, \theta^2, \\ \left\| \nabla^2 \log \pi_{\theta}(a \, \big| \, s) \right\| &\leq C_{\Theta}, \text{for all } \theta. \end{split}$$

- Can be easily satisfied in practice.
 - \Rightarrow motivates reward offset via nonconvex opt \Rightarrow common in practice

Algorithm 1 MRPG: Modified Random-horizon Policy Gradient Algorithm

Input: s_0, θ_0 , and the gradient type \diamondsuit , initialize $k \leftarrow 0$, return set $\hat{\Theta}^* \leftarrow \emptyset$. **Repeat:**

Draw T_{k+1} from Geom $(1 - \gamma)$, and draw $a_0 \sim \pi_{\theta_k}(\cdot | s_0)$. for all $t = 0, \dots, T_{k+1} - 1$ do Simulate $s_{t+1} \sim \mathbb{P}(\cdot | s_t, a_t)$ and $a_{t+1} \sim \pi_{\theta_k}(\cdot | s_{t+1})$. end for

Calculate the stochastic gradient $g_k \leftarrow \text{EvalPG}(s_{T_{k+1}}, a_{T_{k+1}}, \theta_k, \diamondsuit)$. if $(k \mod k_{\text{thre}}) = 0$ then

$$\hat{\Theta}^* \leftarrow \hat{\Theta}^* \cup \{\theta_k\}, \qquad \theta_{k+1} \leftarrow \theta_k + \beta \cdot g_k$$

else

$$\theta_{k+1} \leftarrow \theta_k + \boldsymbol{\alpha} \cdot g_k$$

end if

Update the iteration counter k = k + 1.

Until Convergence

return θ uniformly at random from the set $\hat{\Theta}^*$.

Definition (Second-order Stationary Point)

A point θ is an ϵ_g, ϵ_h -second order stationary point with $\epsilon_g, \epsilon_h > 0$, if

$$\|\nabla J(\theta)\| \le \epsilon_g, \quad \nabla^2 J(\theta) \preceq \epsilon_h \cdot \boldsymbol{I}.$$

Approximate local optima if no degenerate saddle exists

Definition (Second-order Stationary Point)

A point θ is an ϵ_g , ϵ_h -second order stationary point with ϵ_g , $\epsilon_h > 0$, if

$$\|\nabla J(\theta)\| \le \epsilon_g, \quad \nabla^2 J(\theta) \preceq \epsilon_h \cdot \boldsymbol{I}.$$

Approximate local optima if no degenerate saddle exists

Theorem (Improved Convergence)

Let $\{\theta_k\}_{k\geq 0}$ be the sequence of parameters of the policy π_{θ_k} given by the *MRPG* updates, i.e., Algorithm 1, with certain parameters chosen, then θ_k converges to an $(\epsilon, \sqrt{\epsilon})$ -second order stationary point w/ prob. $(1 - \delta)$ after

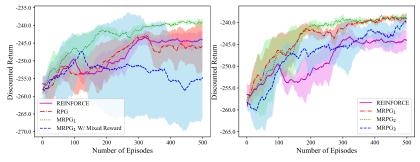
$$\mathcal{O}\bigg(\bigg(\frac{\rho^{3/2}L\epsilon^{-9}}{\delta\eta}\bigg)\log\bigg(\frac{\ell_g L}{\epsilon\eta\rho}\bigg)\bigg),$$

steps. If no degenerate saddle exists, attain locally optimal policy.

Pendulum Experiments

► Compare with REINFORCE [Williams '92]

• Each curve 30 times with mean and ± 1.0 standard deviation



► Mixed reward setting: adding a constant 10.0

- ▶ Policy gradient method ⇒ foundation of many RL methods
 ⇒ its global convergence and limiting properties not well-understood
- We derive iteration complexity from nonconvex opt perspective
 ⇒ of a new version that uses random rollout horizons for Q function
 ⇒ establish conditions under to attain approximate local extrema
- ► Experimentally observe these properties of policy search on pendulum ⇒ solid foundation to derive accelerated & variance-reduced methods

• Objective: Find the policy that maximizes the value given s_0

 $\max_{\pi\in\Pi} V_{\pi}(s_0).$

• Objective: Find the policy that maximizes the value given s_0

$$\max_{\pi \in \Pi} V_{\pi}(s_0).$$

• Parameterized policy $\pi = \pi_{\theta}$ with $\theta \in \mathbb{R}^d$, e.g., Gaussian policy

$$\pi_{\theta}(\cdot \, \big| \, s) = \mathcal{N}(\phi(s)^{\top} \theta, \sigma^2)$$

• Objective: Find the policy that maximizes the value given s_0

$$\max_{\pi \in \Pi} V_{\pi}(s_0).$$

• Parameterized policy $\pi = \pi_{\theta}$ with $\theta \in \mathbb{R}^d$, e.g., Gaussian policy

$$\pi_{\theta}(\cdot \mid s) = \mathcal{N}(\phi(s)^{\top}\theta, \sigma^2)$$

A nonconvex optimization problem

$$\max_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) := V_{\pi_{\boldsymbol{\theta}}}(s_0).$$

▶ Objective: Find the policy that maximizes the value given s_0

 $\max_{\pi\in\Pi} V_{\pi}(s_0).$

• Regularity conditions of the reward R and π_{θ}

Assumption

- ▶ Boundedness: $|R(s, a)| \in [0, U_R]$ for any $(s, a) \in S \times A$.
- ► Smoothness: π_{θ} is differentiable with respect to θ , and $\nabla \log \pi_{\theta}(a \mid s)$ is *L*-Lipschitz and has bounded norm, i.e., for all $(s, a) \in S \times A$,

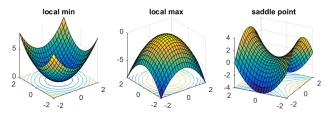
$$\begin{aligned} \|\nabla \log \pi_{\theta^1}(a \mid s) - \nabla \log \pi_{\theta^2}(a \mid s)\| &\leq L \cdot \|\theta^1 - \theta^2\|, \text{ for all } \theta^1, \theta^2, \\ \|\nabla \log \pi_{\theta}(a \mid s)\| &\leq B_{\Theta}, \text{ for all } \theta. \end{aligned}$$

- ▶ Policy gradient theorems [Sutton '00; Silver et al. '14]
- Classical algorithms: REINFORCE [Williams '92], Natural policy gradient [Kakade '02], deterministic policy gradient [Silver et al. '14]
- Tremendous empirical works, especially with deep neural nets [Lillicrap et al. '15; Mnih et al. '16]
- Actor-critic algorithms [Konda et al. '00; Peters et al. '09; Mnih et al. '16] to reduce the variance, two-timescale algorithms
- Recently, Stochastic Variance-Reduced Policy Gradient [Papini et al. '18], from an optimization perspective
- However, none of them established global convergence under a discounted infinite-horizon setting, with iteration complexity

Challenges

- Unbiased estimate of policy gradient is elusive to obtain
 - \Rightarrow Monte-Carlo for finite-horizon, e.g., REINFORCE, creates bias
 - \Rightarrow Online actor-critic has both bias and correlated noise from the critic
- ► Mathematic tool is very general, but the results are limited
 - ⇒ Stochastic approx. & ODE method [Kushner & Yin '76; Borkar '08]
 - \Rightarrow Mostly asymptotic convergence only, i.e., when $t \rightarrow \infty$
- ► Understanding gap from a nonconvex optimization perspective

 \Rightarrow First-order algorithms are not guaranteed to find local optima



Algorithm 2 EstQ: Unbiasedly Estimating Q-function

Input: $s, a, \text{ and } \theta$. Initialize $\hat{Q} \leftarrow 0, s_0 \leftarrow s, \text{ and } a_0 \leftarrow a_0$. Draw T from the geometric distribution $\text{Geom}(1-\gamma^{1/2})$, i.e., $P(T=t) = (1-\gamma^{1/2})\gamma^{t/2}$. **for all** $t = 0, \dots, T-1$ **do** Collect and add the instantaneous reward $R(s_t, a_t)$ to $\hat{Q}, \hat{Q} \leftarrow \hat{Q} + \gamma^{t/2} \cdot R(s_t, a_t)$. Simulate the next state $s_{t+1} \sim \mathbb{P}(\cdot | s_t, a_t)$ and action $a_{t+1} \sim \pi(\cdot | s_{t+1})$. **end for** Collect $R(s_T, a_T)$ by $\hat{Q} \leftarrow \hat{Q} + \gamma^{T/2} \cdot R(s_T, a_T)$. **return** \hat{Q} .

Algorithm 3 RPG: Random-horizon Policy Gradient Algorithm

Input: s_0 and θ_0 , initialize $k \leftarrow 0$. Repeat: Draw T_{k+1} from the geometric distribution $\text{Geom}(1 - \gamma)$. Draw $a_0 \sim \pi_{\theta_k}(\cdot | s_0)$ for all $t = 0, \dots, T_{k+1} - 1$ do Simulate the next state $s_{t+1} \sim \mathbb{P}(\cdot | s_t, a_t)$ and action $a_{t+1} \sim \pi_{\theta_k}(\cdot | s_{t+1})$. end for Obtain an estimate $\hat{Q}_{\pi_{\theta_k}}(s_{T_{k+1}}, a_{T_{k+1}}) \leftarrow \text{Est}\mathbf{Q}(s_{T_{k+1}}, a_{T_{k+1}}, \theta_k)$. Perform stochastic policy gradient

$$\theta_{k+1} \leftarrow \theta_k + \frac{\alpha_k}{1-\gamma} \cdot \hat{Q}_{\pi_{\theta_k}}(s_{T_{k+1}}, a_{T_{k+1}}) \cdot \nabla \log[\pi_{\theta_k}(a_{T_{k+1}} \mid s_{T_{k+1}})]$$

Update the iteration counter $k \leftarrow k + 1$. Until Convergence

Theorem (Unbiasedness)

For any θ and (s, a), $\hat{Q}_{\pi_{\theta}}(s, a)$ and $\hat{\nabla}J(\theta)$ are unbiased estimates of $Q_{\pi_{\theta}}(s, a)$ and $\nabla J(\theta)$, respectively, i.e.,

$$\mathbb{E}[\hat{Q}_{\pi_{\theta}}(s,a)] = Q_{\pi_{\theta}}(s,a), \quad \mathbb{E}[\hat{\nabla}J(\theta)] = \nabla J(\theta).$$

Theorem (Unbiasedness)

For any θ and (s, a), $\hat{Q}_{\pi_{\theta}}(s, a)$ and $\hat{\nabla}J(\theta)$ are unbiased estimates of $Q_{\pi_{\theta}}(s, a)$ and $\nabla J(\theta)$, respectively, i.e.,

$$\mathbb{E}[\hat{Q}_{\pi_{\theta}}(s,a)] = Q_{\pi_{\theta}}(s,a), \quad \mathbb{E}[\hat{\nabla}J(\theta)] = \nabla J(\theta).$$

The gradient and its estimate have other nice properties
 Lemma (Properties of RPG)

► $\nabla J(\theta)$ is bounded: $\|\nabla J(\theta)\| \le B_{\Theta} \cdot U_R / (1 - \gamma)^2$ and is L_{Θ} -Lipschitz: $\|\nabla J(\theta^1) - \nabla J(\theta^2)\| \le L_{\Theta} \cdot \|\theta^1 - \theta^2\|$ for some $L_{\Theta}(U_R, L, B_{\Theta}, \gamma)$.

• $\hat{\nabla} J(\theta)$ is almost surely bounded:

$$\|\hat{\nabla}J(\theta)\| \le \frac{B_{\Theta}U_R}{(1-\gamma)(1-\gamma^{1/2})}.$$

Nonconvex Perspective

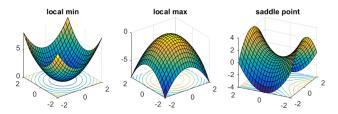
• Can we do better? More than stationary points?

- Can we do better? More than stationary points?
- A fundamental question in nonconvex opt.: Can local optima be achieved using (stochastic) first-order methods, e.g., SGD?

- Can we do better? More than stationary points?
- A fundamental question in nonconvex opt.: Can local optima be achieved using (stochastic) first-order methods, e.g., SGD?
 - \Rightarrow Yes!

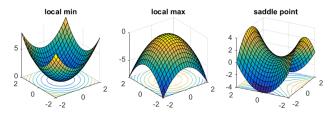
ARL

- Can we do better? More than stationary points?
- A fundamental question in nonconvex opt.: Can local optima be achieved using (stochastic) first-order methods, e.g., SGD?
 - \Rightarrow Yes!
 - \Rightarrow Key: if one can escape saddle points quickly



ARL

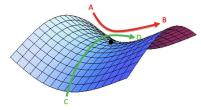
- Can we do better? More than stationary points?
- A fundamental question in nonconvex opt.: Can local optima be achieved using (stochastic) first-order methods, e.g., SGD?
 - \Rightarrow Yes!
 - \Rightarrow Key: if one can escape saddle points quickly



- Observed in many empirical results, e.g., in training neural nets [Bengio et al. '14; Goodfellow et al. '14]
- ▶ Recent theoretical advances [Ge et al. '15; Lee et al. '16; Jin et al. '17]

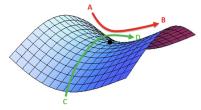
► Key idea:

 \Rightarrow The noise/perturbation of SGA is isotropic [Jin et al. '15, '17]



► Key idea:

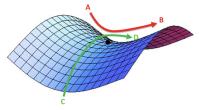
 \Rightarrow The noise/perturbation of SGA is isotropic [Jin et al. '15, '17]



But the noise of SPG is not controlled in RL

► Key idea:

 \Rightarrow The noise/perturbation of SGA is isotropic [Jin et al. '15, '17]



- But the noise of SPG is not controlled in RL
- ► Saddle-escaping without isotropic noise [Daneshmand et al. '18]
- ► But need Correlated Negative Curvature (CNC) conditon

Assumption (CNC Condition (Daneshmand et al. '18))

Let v_{θ} be the eigenvector corresponding to the maximum eigenvalue of the Hessian matrix $\mathcal{H}(\theta)$. The stochastic gradient $\hat{\nabla}J(\theta)$ satisfies the CNC condition, if the second moment of its projection along the direction v_{θ} is uniformly bounded away from zero, i.e.,

$$\exists \eta > 0, \quad s.t., \quad \text{for all } \theta \in \Theta, \quad \mathbb{E}\big\{ [\boldsymbol{v}_{\theta}^{\top} \hat{\nabla} J(\theta)]^2 \big\} > \eta.$$

Assumption (CNC Condition (Daneshmand et al. '18))

Let v_{θ} be the eigenvector corresponding to the maximum eigenvalue of the Hessian matrix $\mathcal{H}(\theta)$. The stochastic gradient $\hat{\nabla}J(\theta)$ satisfies the CNC condition, if the second moment of its projection along the direction v_{θ} is uniformly bounded away from zero, i.e.,

$$\exists \eta > 0, \quad s.t., \quad \text{for all } \theta \in \Theta, \quad \mathbb{E} \big\{ [\boldsymbol{v}_{\theta}^{\top} \hat{\nabla} J(\theta)]^2 \big\} > \eta.$$

• Does our SPG $\hat{\nabla} J(\theta)$ satisfy CNC condition?

Assumption (CNC Condition (Daneshmand et al. '18))

Let v_{θ} be the eigenvector corresponding to the maximum eigenvalue of the Hessian matrix $\mathcal{H}(\theta)$. The stochastic gradient $\hat{\nabla}J(\theta)$ satisfies the CNC condition, if the second moment of its projection along the direction v_{θ} is uniformly bounded away from zero, i.e.,

$$\exists \eta > 0, \quad s.t., \quad \text{for all } \theta \in \Theta, \quad \mathbb{E} \big\{ [\boldsymbol{v}_{\theta}^{\top} \hat{\nabla} J(\theta)]^2 \big\} > \eta.$$

- ► Does our SPG $\hat{\nabla} J(\theta)$ satisfy CNC condition?
- ► Yes! (under certain conditions)

Properties of RPGs

Strict positive/negative reward and Q-function amplify the variance

$$\hat{\nabla}J(\theta) = \frac{1}{1-\gamma} \cdot \hat{Q}_{\pi_{\theta}}(s_T, a_T) \cdot \nabla \log[\pi_{\theta}(a_T \mid s_T)].$$

Properties of RPGs

Strict positive/negative reward and Q-function amplify the variance

$$\hat{\nabla}J(\theta) = \frac{1}{1-\gamma} \cdot \hat{Q}_{\pi_{\theta}}(s_T, a_T) \cdot \nabla \log[\pi_{\theta}(a_T \mid s_T)].$$

Propose SPG with baselines

$$\begin{split} \check{\nabla}J(\theta) &= \frac{1}{1-\gamma} \cdot [\hat{Q}_{\pi_{\theta}}(s_{T}, a_{T}) - \hat{V}_{\pi_{\theta}}(s_{T})] \cdot \nabla \log[\pi_{\theta}(a_{T} \mid s_{T})], \\ \tilde{\nabla}J(\theta) &= \frac{1}{1-\gamma} \cdot [R(s_{T}, a_{T}) + \gamma \hat{V}_{\pi_{\theta}}(s_{T}') - \hat{V}_{\pi_{\theta}}(s_{T})] \cdot \nabla \log[\pi_{\theta}(a_{T} \mid s_{T})]. \end{split}$$

Lemma

The stochastic policy gradients $\check{\nabla} J(\theta)$ and $\tilde{\nabla} J(\theta)$ are also unbiased estimate of $\nabla J(\theta)$, i.e., $\mathbb{E}[\check{\nabla} J(\theta)] = \mathbb{E}[\tilde{\nabla} J(\theta)] = \nabla J(\theta)$.

Properties of RPGs

Strict positive/negative reward and Q-function amplify the variance

$$\hat{\nabla}J(\theta) = \frac{1}{1-\gamma} \cdot \hat{Q}_{\pi\theta}(s_T, a_T) \cdot \nabla \log[\pi_{\theta}(a_T \mid s_T)].$$

Propose SPG with baselines

$$\begin{split} \check{\nabla}J(\theta) &= \frac{1}{1-\gamma} \cdot [\hat{Q}_{\pi_{\theta}}(s_{T}, a_{T}) - \hat{V}_{\pi_{\theta}}(s_{T})] \cdot \nabla \log[\pi_{\theta}(a_{T} \mid s_{T})], \\ \tilde{\nabla}J(\theta) &= \frac{1}{1-\gamma} \cdot [R(s_{T}, a_{T}) + \gamma \hat{V}_{\pi_{\theta}}(s_{T}') - \hat{V}_{\pi_{\theta}}(s_{T})] \cdot \nabla \log[\pi_{\theta}(a_{T} \mid s_{T})]. \end{split}$$

Lemma

The stochastic policy gradients $\check{\nabla} J(\theta)$ and $\tilde{\nabla} J(\theta)$ are also unbiased estimate of $\nabla J(\theta)$, i.e., $\mathbb{E}[\check{\nabla} J(\theta)] = \mathbb{E}[\tilde{\nabla} J(\theta)] = \nabla J(\theta)$.

Lemma

All the three stochastic policy gradients $\hat{\nabla} J(\theta)$, $\check{\nabla} J(\theta)$, and $\tilde{\nabla} J(\theta)$ satisfy the correlated negative curvature condition.

Zhang, Koppel, Zhu, Başa

► Environment: Pendulum in the OpenAI Gym [Brockman et al. '16]

State: s_t = (cos(θ_t), sin(θ_t), θ_t)^T; action a_t ∈ [-20, 20] the joint effort
 Reward R(s_t, a_t) ∈ [-17.1736044, -0.5]:

$$R(s_t, a_t) := -(\theta^2 + 0.1 * \dot{\theta}^2 + 0.001 * a_t^2) - 0.5,$$

• Gaussian Policy: π_{θ} truncated over [-20, 20] and parameterized by

$$\pi_{\theta}(\cdot \mid s) = \mathcal{N}(\mu_{\theta}(s), \sigma^2),$$

where $\mu_{\theta}(s)$ is a neural network with two hidden layers

$$\bar{\nabla}J(\theta) := G(\theta)^{-1} \cdot \nabla J(\theta),$$

where $G(\theta)$ is the Fisher information matrix

$$\bar{\nabla}J(\theta) := G(\theta)^{-1} \cdot \nabla J(\theta),$$

where $G(\theta)$ is the Fisher information matrix

► Stochastic Quasi-Newton method from an optimization perspective

$$\bar{\nabla}J(\theta) := G(\theta)^{-1} \cdot \nabla J(\theta),$$

where $G(\theta)$ is the Fisher information matrix

► Stochastic Quasi-Newton method from an optimization perspective

Theorem (Global Convergence of Natural PG (Informal))

Let $\{\theta_k\}_{k\geq 0}$ be the sequence of parameters of the policy π_{θ_k} given by the Natural PG, then θ_k preserves the global convergence property of SPG to first-order stationary points.

$$\bar{\nabla}J(\theta) := G(\theta)^{-1} \cdot \nabla J(\theta),$$

where $G(\theta)$ is the Fisher information matrix

► Stochastic Quasi-Newton method from an optimization perspective

Theorem (Global Convergence of Natural PG (Informal))

Let $\{\theta_k\}_{k\geq 0}$ be the sequence of parameters of the policy π_{θ_k} given by the Natural PG, then θ_k preserves the global convergence property of SPG to first-order stationary points.

- ► What about convergence to second-order stationary points?
- Does $G(\theta)$ contain enough 2nd-order information to escape saddles?

► The global convergence property of PG methods is not well-understood

- ► The global convergence property of PG methods is not well-understood
- ► Propose an unbiased SPG estimate, facilitating a nonconvex perspective

Concluding Remarks

- ► The global convergence property of PG methods is not well-understood
- ► Propose an unbiased SPG estimate, facilitating a nonconvex perspective
- ► Justify that simple conditions may indeed lead to local optimal policies, both theoretically and empirically

Concluding Remarks

- ► The global convergence property of PG methods is not well-understood
- ► Propose an unbiased SPG estimate, facilitating a nonconvex perspective
- Justify that simple conditions may indeed lead to local optimal policies, both theoretically and empirically
- Summary & Future Work

	1st-order Stationary Points	2nd-order Stationary Points
Vanilla SPG	\checkmark	\checkmark
	Re-discover the asymptotic a.s. conv.;	Prove CNC condition;
	Establish conv. rate	Establish conv. rate
Natural PG	\checkmark	
	Establish both asymptotic	?
	a.s. conv. and conv. rate	

Concluding Remarks

- ► The global convergence property of PG methods is not well-understood
- ► Propose an unbiased SPG estimate, facilitating a nonconvex perspective
- Justify that simple conditions may indeed lead to local optimal policies, both theoretically and empirically
- Summary & Future Work

	1st-order Stationary Points	2nd-order Stationary Points
Vanilla SPG	\checkmark	\checkmark
	Re-discover the asymptotic a.s. conv.;	Prove CNC condition;
	Establish conv. rate	Establish conv. rate
Natural PG	\checkmark	
	Establish both asymptotic	?
	a.s. conv. and conv. rate	

Thank You!