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Reinforcement learning: data-driven control

= unknown system model/cost function

= parameterize policy/cost as stat. model for high dimensional spaces
Recent successes:

= AlphaGo Zero [Silver et al. '17]

= Bipedal walker on terrain [Heess et al. '17]

= Personalized web services [Theocharous et al. '15]

agent environment
from state s, take action a
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getreward R, new state s’
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. Problem Formulation E,'_:VEDM

Markov decision process (MDP) (S, A, P, R, )

= State space S, action space A (high-dim. or even continuous)
= Markov transition kernel P(s' | s,a) : S x A — P(S)

= Reward R : § x A — R, discount factor v € (0,1)

Stochastic policy 7 : § — P(A), i.e., ar ~ 7(- ’ s¢)

50—8)7

Goal: find {a; = 7(s;)} to maximize Vy(s) := E[V(s) | a ~ 7(s)]
maxer Vi (s) where II is some family of distributions

= E.g., Gaussian m = mg w/ 0 € R = m(-|s) = N(¢(s)6,0?)
= Define action-state value (Q) function Qr(s,a) = E[Vx(s) | ag = d

Infinite-horizon setting value function:

Vis) = E(Z'yt - R(s¢, ay)

t=0
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Pros of policy gradient [Silver ' 14]:
Better convergence properties
Effective in high-dimensional or continuous action spaces
Can learn stochastic policies

Cons of policy gradient [Silver '14]:

Typically converge to a local rather than global optimum
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Pros of policy gradient [Silver '14]:

Better convergence properties (How much better?)
Effective in high-dimensional or continuous action spaces
Can learn stochastic policies

Cons of policy gradient [Silver ' 14]:
Typically converge to a local rather than global optimum (Really?)

= First-order algorithms are not guaranteed to find local optima

local min local max saddle point
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. Context E,'_:VEDM

Pros of policy gradient [Silver ' 14]:

Better convergence properties (How much better?)
Effective in high-dimensional or continuous action spaces
Can learn stochastic policies

Cons of policy gradient [Silver ' 14]:
Typically converge to a local rather than global optimum (Really?)

Contribution: global convergence of policy gradient methods

= for discounted infinite-horizon setting w/ iteration complexity
= conditions for converging to approximate local extrema
Contrast w/ asymptotics via ODEs [Kushner & Yin '76; Borkar '08]

= Correct claims of attaining local extrema via nonconvex opt.
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Policy gradient formula [Sutton '00]

1
VJ(0) = T E(s,a)~po () [V10g To(al s) - Qr,(s,a)].

= pp(s,a) = ergodic dist. of Markov chain for fixed policy:

po(s,a) =(1—7) Z’ytp(st =5 | S0,70) - mp(a | s).
t=0
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Policy gradient formula [Sutton '00]

1
VJ(0) = T E(s,a)~po () [V10g To(al s) - Qr,(s,a)].

= pp(s,a) = ergodic dist. of Markov chain for fixed policy:

po(s,a) =(1—7) Z’ytp(st =5 | S0,70) - mp(a | s).
t=0

Stochastic gradient ascent (SGA): 01 = 0 + ak@J(Qk).
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. Policy Gradient Theorem E,'_:VEDM

Policy gradient formula [Sutton '00]

1
VJ(0) = T E(s,a)~po () [V10g To(al s) - Qr,(s,a)].

= pp(s,a) = ergodic dist. of Markov chain for fixed policy:

po(s,a) =(1—7) Z’ytp(st =5 | S0,70) - mp(a | s).
t=0

Stochastic gradient ascent (SGA): 01 = 0 + ak?J(ﬁk).
Unbiasedly sampling V.J(6) is challenging, since this requires
= (), (s, a) unbiasedly estimate Q, (s, a)

= (s, a) drawn from py(-, -)
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Unbiasedly estimate (), (s, @) [Paternain 2018]:
= Draw T’ ~ Geom(1 —~'/2),ie., P(T' =t) = (1 — y}/2)4/2
= Rollout a trajectory (so, ag, S1,° "+ ST/, Q)

(s,a) E fyt/z st,at)‘sozs,aoza
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Unbiasedly estimate (), (s, @) [Paternain 2018]:
= Draw T’ ~ Geom(1 —~'/2),ie., P(T' =t) = (1 — y}/2)4/2
= Rollout a trajectory (so, ag, S1,° "+ ST/, Q)

(s,a) E fyt/z st,at)‘sozs,aoza

= Benefit of '/2: almost sure (a.s.) boundedness of ()., (s, )
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I

Unbiasedly estimate (), (s, @) [Paternain 2018]:
= Draw T’ ~ Geom(1 — 4/2),ie., P(T" =t) = (1 — y1/2)4/2
= Rollout a trajectory (so, ag, S1,° "+ ST/, Q)

(s,a) E Wt/z st,at)‘sozs,aoza

= Benefit of '/2: almost sure (a.s.) boundedness of ()., (s, )
Draw (s, a) from pg(-,-):

= Draw T ~ Geom(1 — )

= Rollout a trajectory (so, ag, S1, "+ , ST, ar)

= Evaluate the gradient at (s7, ar)

VJ(0) = ——  Qn, (57, ar) - Vioglmg(ar | s7)]
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cm
Unbiasedly estimate (), (s, @) [Paternain 2018]:
= Draw T’ ~ Geom(1 —~'/2),ie., P(T' =t) = (1 — y}/2)4/2
= Rollout a trajectory (so, ag, S1,° "+ ST/, Q)

(s,a) E Wt/z st,at)‘sozs,aoza

= Benefit of v'/2: almost sure (a.s.) boundedness of ()., (s, a)

Draw (s, a) from pg(-,-):

= Draw T ~ Geom(1 — )

= Rollout a trajectory (so, ag, S1, "+ , ST, ar)
= Evaluate the gradient at (s7, ar)

- 1

VJ(0) = T Qny(s7,07) - Viog[mg(ar | s7)]

Random-horizon Policy Gradient (RPG) update:
Ok+1 = Ok + ak@J(Hk)
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Asymptotic convergence to stationary points:

Theorem (Convergence with Diminishing Stepsize)

Let {01} >0 be the sequence of parameters of the policy g, given by RPG.
If the stepsize {ay,} satisfies

o0

o0
Zak; = 00, Zaf < 00,
k=0

k=0

then we have
lim |VJ(0)|| =0, as.
k—o0

= Recover the result obtained by ODE method (Borkar & Meyn)
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Convergence rate with diminishing stepsize

Theorem (Rate with Diminishing Stepsize)
Let {0y } >0 be the sequence of parameters of the policy g, given by RPG.
Let the stepsize be ay, = k= where a € (0,1). Let

K. =min {k: ogifng[”VJ(em)”Q] <e} <O(e2)

= Recover the O(1/+/k) optimal rate of SGA for nonconvex opt.
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Convergence with constant stepsize

Corollary (Convergence with Constant Stepsize)

Let {0y }1,>0 be the sequence of parameters of the policy g, given by RPG.
Let the stepsize be o, = o > 0. Then, there exists some constant C' > 0
such that

1 & 1
Emzz (VT (0m)IIP] < (ka—i-C-a).

= Recover the conv. of SGA to the neighborhood of stationary points

= Trade-off between the conv. speed and the accuracy by choosing «
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Compare with REINFORCE [Williams '92]
= fixed Q function horizon estimate

Each curve 30 times with mean and £1.0 standard deviation
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. Additional Assumptions E,'_:VEDM

Can we do better? Link R & my to 2nd-order structure of value func.
Assumption
Positive/negative reward: |R(s, a)| € [Lr, Ug] uniformly with L > 0.
Fisher information matrix induced by g (- ’ s) is positive-definite

G(9) := / po(s,a)-Vlogmy(als) [Vlegms(a| )] "dads = Ly - I.
Sx.A

Smoothness: there exist po > 0 and Ce < oo s.t. for any (s,a) € S x A

HV2 log mg1 (a|s) — V? log mp2 (a |s)|| < pe - 0" — 62|, for all 0", 67,
HV2 log o (a ’ S)H < Ceo,forall 6.

Can be easily satisfied in practice.

= motivates reward offset via nonconvex opt =- common in practice
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. Modified RPG Algorithm [GEveom

Algorithm 1 MRPG: Modified Random-horizon Policy Gradient Algorithm

Input: sg, 6y, and the gradient type <, initialize k& < 0, return set O 0.
Repeat:
Draw T} from Geom(1 — 7), and draw ag ~ g, (- | s0).
forallt=0,--- ,Tp11 — 1do
Simulate St41 ™~ P( ‘ St, at) and Q41 ~ o, ( ‘ St+1).
end for
Calculate the stochastic gradient g, <— EvalPG(s7,_,, a7, .0k, ).
if (k mod k) = O then

O* « O* U {0}, Ok+1 < Ok + 5 gk
else
k1 < O+ - gk
end if
Update the iteration counter k = k + 1.
Until Convergence
return 6 uniformly at random from the set o
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Definition (Second-order Stationary Point)
A point 0 is an €g4, €5,-second order stationary point with €4, €5, > 0, if

IVIO)| < ey V2J(O) <€ 1.

Approximate local optima if no degenerate saddle exists
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Definition (Second-order Stationary Point)
A point 0 is an €g4, €5,-second order stationary point with €4, €5, > 0, if

IVIO)| < ey V2J(O) <€ 1.

Approximate local optima if no degenerate saddle exists

Theorem (Improved Convergence)

Let {0} }1,>0 be the sequence of parameters of the policy g, given by the
MRPG updates, with certain parameters chosen, then 6y, converges to an
(€, /€)-second order stationary point w/ prob. (1 — §) after

of ("5 e (7)),

steps. If no degenerate saddle exists, attain locally optimal policy.
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Discounted Return
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Policy gradient method = foundation of many RL methods
= global convergence and limiting properties not well-understood

= in infinite horizon settings
We derive iteration complexity from nonconvex opt perspective
= of a new version that uses random rollout horizons for ) function

= establish conditions for attaining approximate local extrema

Experimentally observe these properties of policy search on pendulum

= solid foundation to derive accelerated & variance-reduced methods
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