

Convergence and Iteration Complexity of Policy Gradient Method for Infinite-Horizon Reinforcement Learning

Kaiqing Zhang* Alec Koppel§ Hao Zhu‡ Tamer Başar* *UIUC ‡UT Austin §U.S. Army Research Laboratory

Large-Scale Distributed Optimization and Decentralized Control I IEEE Conference on Decision and Control

Dec. 13, 2019

Reinforcement Learning

Reinforcement learning: data-driven control

- ⇒ unknown system model/cost function
- ⇒ parameterize policy/cost as stat. model for high dimensional spaces

Recent successes:

- ⇒ AlphaGo Zero [Silver et al. '17]
- ⇒ Bipedal walker on terrain [Heess et al. '17]
- ⇒ Personalized web services [Theocharous et al. '15]

Problem Formulation

Markov decision process (MDP) $(S, A, \mathbb{P}, R, \gamma)$

- \Rightarrow State space S, action space A (high-dim. or even continuous)
- \Rightarrow Markov transition kernel $\mathbb{P}(s' \mid s, a) : \mathcal{S} \times \mathcal{A} \rightarrow \mathcal{P}(\mathcal{S})$
- \Rightarrow Reward $R: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$, discount factor $\gamma \in (0,1)$

Stochastic policy $\pi: \mathcal{S} \to \mathcal{P}(\mathcal{A})$, i.e., $a_t \sim \pi(\cdot \mid s_t)$

Infinite-horizon setting value function:

$$V(s) = \mathbb{E}\left(\sum_{t=0}^{\infty} \gamma^t \cdot R(s_t, a_t) \,\middle|\, s_0 = s\right),\,$$

Goal: find $\{a_t = \pi(s_t)\}\$ to maximize $V_{\pi}(s) := \mathbb{E}[V(s) \mid a \sim \pi(s)]$ $\max_{\pi \in \Pi} V_{\pi}(s)$ where Π is some family of distributions

$$\Rightarrow$$
 E.g., Gaussian $\pi = \pi_{\theta}$ w/ $\theta \in \mathbb{R}^d \Rightarrow \pi_{\theta}(\cdot \mid s) = \mathcal{N}(\phi(s)^{\top}\theta, \sigma^2)$

 \Rightarrow Define action-state value (Q) function $Q_{\pi}(s,a) = \mathbb{E}[V_{\pi}(s) \mid a_0 = a]$

Literature Landscape

Context

Pros of policy gradient [Silver '14]:

Better convergence properties
Effective in high-dimensional or continuous action spaces
Can learn stochastic policies

Cons of policy gradient [Silver '14]:

Typically converge to a local rather than global optimum

Pros of policy gradient [Silver '14]:

Better convergence properties (How much better?)

Effective in high-dimensional or continuous action spaces Can learn stochastic policies

Can learn stochastic policies

Cons of policy gradient [Silver '14]:

Typically converge to a local rather than global optimum (Really?)

⇒ First-order algorithms are not guaranteed to find local optima

Context

Pros of policy gradient [Silver '14]:

Better convergence properties (How much better?)

Effective in high-dimensional or continuous action spaces Can learn stochastic policies

Cons of policy gradient [Silver '14]:

Typically converge to a local rather than global optimum (Really?)

Contribution: global convergence of policy gradient methods

- ⇒ for discounted infinite-horizon setting w/ iteration complexity
- ⇒ conditions for converging to approximate local extrema

Contrast w/ asymptotics via ODEs [Kushner & Yin '76; Borkar '08]

⇒ Correct claims of attaining local extrema via nonconvex opt.

Policy Gradient Theorem

Policy gradient formula [Sutton '00]

$$\nabla J(\theta) = \frac{1}{1 - \gamma} \cdot \mathbb{E}_{(s,a) \sim \rho_{\theta}(\cdot,\cdot)} \left[\nabla \log \pi_{\theta}(a \mid s) \cdot Q_{\pi_{\theta}}(s,a) \right].$$

 $\Rightarrow \rho_{\theta}(s, a) \Rightarrow$ ergodic dist. of Markov chain for fixed policy:

$$\rho_{\theta}(s, a) = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^{t} p(s_{t} = s \mid s_{0}, \pi_{\theta}) \cdot \pi_{\theta}(a \mid s).$$

Policy Gradient Theorem

Policy gradient formula [Sutton '00]

$$\nabla J(\theta) = \frac{1}{1 - \gamma} \cdot \mathbb{E}_{(s,a) \sim \rho_{\theta}(\cdot,\cdot)} \left[\nabla \log \pi_{\theta}(a \mid s) \cdot Q_{\pi_{\theta}}(s,a) \right].$$

 $\Rightarrow \rho_{\theta}(s, a) \Rightarrow$ ergodic dist. of Markov chain for fixed policy:

$$\rho_{\theta}(s, a) = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^{t} p(s_{t} = s \mid s_{0}, \pi_{\theta}) \cdot \pi_{\theta}(a \mid s).$$

Stochastic gradient ascent (SGA): $\theta_{k+1} = \theta_k + \alpha_k \hat{\nabla} J(\theta_k)$.

Policy gradient formula [Sutton '00]

$$\nabla J(\theta) = \frac{1}{1 - \gamma} \cdot \mathbb{E}_{(s,a) \sim \rho_{\theta}(\cdot,\cdot)} \left[\nabla \log \pi_{\theta}(a \mid s) \cdot Q_{\pi_{\theta}}(s,a) \right].$$

 $\Rightarrow \rho_{\theta}(s, a) \Rightarrow$ ergodic dist. of Markov chain for fixed policy:

$$\rho_{\theta}(s, a) = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^{t} p(s_{t} = s \mid s_{0}, \pi_{\theta}) \cdot \pi_{\theta}(a \mid s).$$

Stochastic gradient ascent (SGA): $\theta_{k+1} = \theta_k + \alpha_k \hat{\nabla} J(\theta_k)$.

Unbiasedly sampling $\hat{\nabla} J(\theta)$ is challenging, since this requires

- $\Rightarrow \hat{Q}_{\pi_{\theta}}(s, a)$ unbiasedly estimate $Q_{\pi_{\theta}}(s, a)$
- \Rightarrow (s, a) drawn from $\rho_{\theta}(\cdot, \cdot)$

Unbiasedly estimate $Q_{\pi_{\theta}}(s, a)$ [Paternain 2018]:

- \Rightarrow Draw $T' \sim \text{Geom}(1 \gamma^{1/2})$, i.e., $P(T' = t) = (1 \gamma^{1/2})\gamma^{t/2}$
- \Rightarrow Rollout a trajectory $(s_0, a_0, s_1, \cdots, s_{T'}, a_{T'})$

$$\hat{Q}_{\pi_{\theta}}(s, a) = \sum_{t=0}^{T} \gamma^{t/2} \cdot R(s_t, a_t) \mid s_0 = s, a_0 = a$$

Unbiasedly estimate $Q_{\pi_{\theta}}(s, a)$ [Paternain 2018]:

- \Rightarrow Draw $T' \sim \text{Geom}(1 \gamma^{1/2})$, i.e., $P(T' = t) = (1 \gamma^{1/2})\gamma^{t/2}$
- \Rightarrow Rollout a trajectory $(s_0, a_0, s_1, \cdots, s_{T'}, a_{T'})$

$$\hat{Q}_{\pi_{\theta}}(s, a) = \sum_{t=0}^{T} \gamma^{t/2} \cdot R(s_t, a_t) \mid s_0 = s, a_0 = a$$

 \Rightarrow Benefit of $\gamma^{1/2}$: almost sure (a.s.) boundedness of $\hat{Q}_{\pi_0}(s,a)$

Unbiasedly estimate $Q_{\pi_{\theta}}(s, a)$ [Paternain 2018]:

- \Rightarrow Draw $T' \sim \text{Geom}(1 \gamma^{1/2})$, i.e., $P(T' = t) = (1 \gamma^{1/2})\gamma^{t/2}$
- \Rightarrow Rollout a trajectory $(s_0, a_0, s_1, \cdots, s_{T'}, a_{T'})$

$$\hat{Q}_{\pi_{\theta}}(s, a) = \sum_{t=0}^{T} \gamma^{t/2} \cdot R(s_t, a_t) \mid s_0 = s, a_0 = a$$

 \Rightarrow Benefit of $\gamma^{1/2}$: almost sure (a.s.) boundedness of $\hat{Q}_{\pi_{\theta}}(s,a)$

Draw (s, a) from $\rho_{\theta}(\cdot, \cdot)$:

- \Rightarrow Draw $T \sim \text{Geom}(1 \gamma)$
- \Rightarrow Rollout a trajectory $(s_0, a_0, s_1, \cdots, s_T, a_T)$
- \Rightarrow Evaluate the gradient at (s_T, a_T)

$$\hat{\nabla}J(\theta) = \frac{1}{1-\gamma} \cdot \hat{Q}_{\pi_{\theta}}(s_T, a_T) \cdot \nabla \log[\pi_{\theta}(a_T \mid s_T)]$$

Unbiasedly estimate $Q_{\pi_{\theta}}(s, a)$ [Paternain 2018]:

$$\Rightarrow$$
 Draw $T' \sim \text{Geom}(1 - \gamma^{1/2})$, i.e., $P(T' = t) = (1 - \gamma^{1/2})\gamma^{t/2}$

 \Rightarrow Rollout a trajectory $(s_0, a_0, s_1, \cdots, s_{T'}, a_{T'})$

$$\hat{Q}_{\pi_{\theta}}(s, a) = \sum_{t=0}^{1} \gamma^{t/2} \cdot R(s_t, a_t) \mid s_0 = s, a_0 = a$$

 \Rightarrow Benefit of $\gamma^{1/2}:$ almost sure (a.s.) boundedness of $\hat{Q}_{\pi_{\theta}}(s,a)$

Draw (s, a) from $\rho_{\theta}(\cdot, \cdot)$:

$$\Rightarrow$$
 Draw $T \sim \text{Geom}(1-\gamma)$

 \Rightarrow Rollout a trajectory $(s_0, a_0, s_1, \cdots, s_T, a_T)$

 \Rightarrow Evaluate the gradient at (s_T, a_T)

$$\hat{\nabla}J(\theta) = \frac{1}{1 - \gamma} \cdot \hat{Q}_{\pi_{\theta}}(s_T, a_T) \cdot \nabla \log[\pi_{\theta}(a_T \mid s_T)]$$

Random-horizon Policy Gradient (RPG) update:

$$\theta_{k+1} = \theta_k + \alpha_k \hat{\nabla} J(\theta_k)$$

Convergence Guarantee

Asymptotic convergence to stationary points:

Theorem (Convergence with Diminishing Stepsize)

Let $\{\theta_k\}_{k>0}$ be the sequence of parameters of the policy π_{θ_k} given by RPG. *If the stepsize* $\{\alpha_k\}$ *satisfies*

$$\sum_{k=0}^{\infty} \alpha_k = \infty, \quad \sum_{k=0}^{\infty} \alpha_k^2 < \infty,$$

then we have

$$\lim_{k \to \infty} \|\nabla J(\theta_k)\| = 0, \ a.s.$$

⇒ Recover the result obtained by ODE method (Borkar & Meyn)

Convergence Guarantee

Convergence rate with diminishing stepsize

Theorem (Rate with Diminishing Stepsize)

Let $\{\theta_k\}_{k\geq 0}$ be the sequence of parameters of the policy π_{θ_k} given by RPG. Let the stepsize be $\alpha_k=k^{-a}$ where $a\in (0,1)$. Let

$$K_{\epsilon} = \min \left\{ k : \inf_{0 \le m \le k} \mathbb{E}[\|\nabla J(\theta_m)\|^2] \le \epsilon \right\} \le \mathcal{O}(\epsilon^{-\frac{1}{2}})$$

 \Rightarrow Recover the $O(1/\sqrt{k})$ optimal rate of SGA for nonconvex opt.

Convergence with constant stepsize

Corollary (Convergence with Constant Stepsize)

Let $\{\theta_k\}_{k\geq 0}$ be the sequence of parameters of the policy π_{θ_k} given by RPG. Let the stepsize be $\alpha_k = \alpha > 0$. Then, there exists some constant C > 0 such that

$$\frac{1}{k} \sum_{m=1}^{k} \mathbb{E}[\|\nabla J(\theta_m)\|^2] \le O\left(\frac{1}{k\alpha} + C \cdot \alpha\right).$$

- ⇒ Recover the conv. of SGA to the neighborhood of stationary points
- \Rightarrow Trade-off between the conv. speed and the accuracy by choosing α

Pendulum Experiments

Compare with REINFORCE [Williams '92]

⇒ fixed Q function horizon estimate

Each curve 30 times with mean and ± 1.0 standard deviation

Additional Assumptions

Can we do better? Link $R \& \pi_{\theta}$ to 2nd-order structure of value func.

Assumption

Positive/negative reward: $|R(s,a)| \in [L_R, U_R]$ uniformly with $L_R > 0$. Fisher information matrix induced by $\pi_{\theta}(\cdot \mid s)$ is positive-definite

$$G(\theta) := \int_{\mathcal{S} \times \mathcal{A}} \rho_{\theta}(s, a) \cdot \nabla \log \pi_{\theta}(a \mid s) \cdot \left[\nabla \log \pi_{\theta}(a \mid s) \right]^{\top} dads \succeq L_{I} \cdot \mathbf{I}.$$

Smoothness: there exist $\rho_{\Theta} > 0$ and $C_{\Theta} < \infty$ s.t. for any $(s, a) \in \mathcal{S} \times \mathcal{A}$

$$\left\| \nabla^2 \log \pi_{\theta^1}(a \mid s) - \nabla^2 \log \pi_{\theta^2}(a \mid s) \right\| \leq \rho_{\Theta} \cdot \|\theta^1 - \theta^2\|, \text{ for all } \theta^1, \theta^2, \\ \left\| \nabla^2 \log \pi_{\theta}(a \mid s) \right\| \leq C_{\Theta}, \text{ for all } \theta.$$

Can be easily satisfied in practice.

 \Rightarrow motivates reward offset via nonconvex opt \Rightarrow common in practice

Modified RPG Algorithm

Algorithm 1 MRPG: Modified Random-horizon Policy Gradient Algorithm

Input: s_0 , θ_0 , and the gradient type \diamondsuit , initialize $k \leftarrow 0$, return set $\hat{\Theta}^* \leftarrow \emptyset$. **Repeat:**

Draw T_{k+1} from Geom $(1-\gamma)$, and draw $a_0 \sim \pi_{\theta_k}(\cdot \mid s_0)$.

for all $t = 0, \dots, T_{k+1} - 1$ do

Simulate $s_{t+1} \sim \mathbb{P}(\cdot \mid s_t, a_t)$ and $a_{t+1} \sim \pi_{\theta_k}(\cdot \mid s_{t+1})$.

end for

Calculate the stochastic gradient $g_k \leftarrow \mathbf{EvalPG}(s_{T_{k+1}}, a_{T_{k+1}}, \theta_k, \diamondsuit)$.

if $(k \mod k_{\text{thre}}) = 0$ then

$$\hat{\Theta}^* \leftarrow \hat{\Theta}^* \cup \{\theta_k\}, \qquad \theta_{k+1} \leftarrow \theta_k + \beta \cdot g_k$$

else

$$\theta_{k+1} \leftarrow \theta_k + \alpha \cdot g_k$$

end if

Update the iteration counter k = k + 1.

Until Convergence

return θ uniformly at random from the set $\hat{\Theta}^*$.

Improved Convergence Guarantee

Definition (Second-order Stationary Point)

A point θ is an ϵ_g , ϵ_h -second order stationary point with ϵ_g , $\epsilon_h > 0$, if

$$\|\nabla J(\theta)\| \le \epsilon_g, \quad \nabla^2 J(\theta) \le \epsilon_h \cdot \mathbf{I}.$$

Approximate local optima if no degenerate saddle exists

Improved Convergence Guarantee

Definition (Second-order Stationary Point)

A point θ is an ϵ_g , ϵ_h -second order stationary point with ϵ_g , $\epsilon_h > 0$, if

$$\|\nabla J(\theta)\| \le \epsilon_g, \quad \nabla^2 J(\theta) \le \epsilon_h \cdot \boldsymbol{I}.$$

Approximate local optima if no degenerate saddle exists

Theorem (Improved Convergence)

Let $\{\theta_k\}_{k\geq 0}$ be the sequence of parameters of the policy π_{θ_k} given by the MRPG updates, with certain parameters chosen, then θ_k converges to an $(\epsilon, \sqrt{\epsilon})$ -second order stationary point w/ prob. $(1-\delta)$ after

$$\mathcal{O}\left(\left(\frac{\rho^{3/2}L\epsilon^{-9}}{\delta\eta}\right)\log\left(\frac{\ell_g L}{\epsilon\eta\rho}\right)\right),\,$$

steps. If no degenerate saddle exists, attain locally optimal policy.

Pendulum Experiments

Compare with REINFORCE [Williams '92]

Each curve 30 times with mean and ± 1.0 standard deviation

Mixed reward setting: adding a constant 10.0

Policy gradient method \Rightarrow foundation of many RL methods

- \Rightarrow global convergence and limiting properties not well-understood
- ⇒ in infinite horizon settings

We derive iteration complexity from nonconvex opt perspective

- \Rightarrow of a new version that uses random rollout horizons for Q function
- ⇒ establish conditions for attaining approximate local extrema

Experimentally observe these properties of policy search on pendulum

⇒ solid foundation to derive accelerated & variance-reduced methods