

Policy Gradient using Weak Derivatives for Reinforcement Learning

Sujay Bhatt
* Alec Koppel $\$ Vikram Krishnamurthy
† *UIUC $\$ ‡Cornell $\$ U.S. Army Research Laboratory

Machine Learning in Complex Networks I IEEE Conference on Decision and Control

Dec. 12, 2019

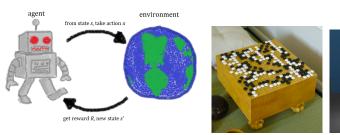
Reinforcement Learning

Reinforcement learning: data-driven control

 \Rightarrow unknown system model/cost function

 \Rightarrow parameterize policy/cost as stat. model for high dimensional spaces Recent successes:

- \Rightarrow AlphaGo Zero [Silver et al. '17]
- \Rightarrow Bipedal walker on terrain [Heess et al. '17]
- \Rightarrow Personalized web services [Theocharous et al. '15]



Problem Formulation

Markov decision process (MDP) $(S, A, \mathbb{P}, R, \gamma)$

- \Rightarrow State space S, action space A (high-dim. or even continuous)
- $\Rightarrow \text{Markov transition kernel } \mathbb{P}(s' \,\big|\, s, a): \mathcal{S} \times \mathcal{A} \rightarrow \mathcal{P}(\mathcal{S})$
- $\Rightarrow \text{Reward } R : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}, \text{discount factor } \gamma \in (0, 1)$

Stochastic policy $\pi : S \to \mathcal{P}(\mathcal{A})$, i.e., $a_t \sim \pi(\cdot | s_t)$ Infinite-horizon setting value function:

$$V(s) = \mathbb{E}\bigg(\sum_{t=0}^{\infty} \gamma^t \cdot R(s_t, a_t) \, \bigg| \, s_0 = s\bigg),$$

Goal: find $\{a_t = \pi(s_t)\}$ to maximize $V_{\pi}(s) := \mathbb{E}[V(s) \mid a \sim \pi(s)]$ $\max_{\pi \in \Pi} V_{\pi}(s)$ where Π is some family of distributions \Rightarrow E.g., Gaussian $\pi = \pi_{\theta}$ w/ $\theta \in \mathbb{R}^d \Rightarrow \pi_{\theta}(\cdot \mid s) = \mathcal{N}(\phi(s)^{\top}\theta, \sigma^2)$ \Rightarrow Define action-state value (Q) function $Q_{\pi}(s, a) = \mathbb{E}[V_{\pi}(s) \mid a_0 = a]$

Literature Landscape

Policy Search Dynamic Programming

Policy Gradient Metho	od Policy Iteration	Value Iteration
REINFORCE	Actor-Critic	Q Learning
Natural Gradient D	eep Det. Policy Gra	ad. Deep Q Networks
Trust Region Policy Opt	Soft Q Learning	Double Deep Q Nets
Proximal Policy Op	AlphaGO (Zero) t.	

Literature Landscape

Policy Search Dynamic Programming

Policy Gradient Metho	od Policy Iteration	Value Iteration
REINFORCE	Actor-Critic	Q Learning
Natural Gradient D	eep Det. Policy Gra	d. Deep Q Networks
Trust Region Policy Opt	Soft Q Learning	Double Deep Q Nets
Proximal Policy Op	AlphaGO (Zero) t.	

Literature Landscape

: Impact of Nondeterminism on Reproducibility in Deep Reinforcement Learning

Prabhat Nagarajan partment of Computer Science a University of Texas at Austin mabhatn@cs.utexas.edu Garrett Warnell Computational and Information Sciences Directorate U.S. Army Research Laboratory garrett.a.warnell.civ@mail.mil

Peter Stone Department of Computer Science The University of Texas at Austin pstone@cs.utexas.edu

Abstract

While deep reinforcement lear results reported in the literatur in reproducibility can arise (to computational resources of details. Another factor of part ability to control for sources (is because DRL is faced with t

Deep Reinforcement Learning that Matters

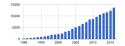
Peter Henderson^{1*}, Riashat Islam^{1,2*}, Philip Bachman² Joelle Pineau¹, Doina Precup¹, David Meger¹ ¹McGill University. Montreal. Canada

² Microsoft Maluuba, Montreal, Canada

{peter.henderson,riashat.islam}@mail.mcgill.ca,phbachma@microsoft.com
{jpineau,dprecup}@cs.mcgill.ca,dmeger@cim.mcgill.ca

Abstract

In recent years, significant progress has been made in solving challenging professionas across various dominais using deep rinforcement learning (RL). Reproducing existing work and accurately judging the improvements of dered by novel meltiods is viria to sustaining this progress. Unfortunately, reprotating forwards, the particular, non-determinism in standard benchmark environments, combined with variance intrinsic to the methods, can make reported results tough to interprevention of the standard standard standard benchmark and the standardization of experimental percenting, is is difficult to determine whether inthia paper, we investigate challenges posed by reproducibility, progres experimental percenting procedures.



Amy Zhang

McGill University

Facebook AI Research

amyzhang@fb.com

Figure 1: Growth of published reinforcement learning papers. Shown are the number of RL-related publications (y-axis) per year (x-axis) scraped from Google Scholar searches.

Nicolas Ballas Facebook AI Research ballasn@fb.com

Joelle Pineau McGill University Facebook AI Research jpineau@fb.com

A Dissection of Overfitting and Generalization in

Continuous Reinforcement Learning

Abstract

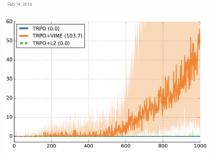
ng are well known. Howic tools and remedies, was work, we aim to offer new of overfitting in deep Rein-

Policy Gradient using Weak Derivatives for Reinforcement Learning

6

Policy Search is High Variance

From Alexander Irpan's blog, software engineer at Google Brain:



High sample path variance precludes practicality of Deep RL $\Rightarrow 30\%$ failure rate is counted as working, publishable

Bhatt, Koppel, Krishnamurthy

Policy Gradient Theorem

Policy gradient formula [Sutton '00]

$$\nabla J(\theta) = \frac{1}{1 - \gamma} \cdot \mathbb{E}_{(s,a) \sim \rho_{\theta}(\cdot, \cdot)} \big[\nabla \log \pi_{\theta}(a \mid s) \cdot Q_{\pi_{\theta}}(s, a) \big].$$

 $\Rightarrow \rho_{\theta}(s, a) \Rightarrow$ ergodic dist. of Markov chain for fixed policy:

$$\rho_{\theta}(s,a) = (1-\gamma) \sum_{t=0}^{\infty} \gamma^t p(s_t = s \mid s_0, \pi_{\theta}) \cdot \pi_{\theta}(a \mid s).$$

Estimating Score function: $\mathcal{O}(N)$ variance. for N samples \Rightarrow See POMDPs, V. Krishnamurthy, Cambridge University Press, 2016

Bhatt, Koppel, Krishnamurthy

Policy Grad. Thm. w/ Weak Derivatives

Policy gradient formula [Bhatt et al '19]

$$\nabla J(\theta) = \frac{1}{1-\gamma} [\mathbb{E}_{(s,a)\sim\pi^{\oplus}_{\theta}(\cdot,\cdot)} \{g(\theta,s) \cdot Q_{\pi_{\theta}}(s,a)\} - \mathbb{E}_{(s,a)\sim\pi^{\oplus}_{\theta}(\cdot,\cdot)} \{g(\theta,s) \cdot Q_{\pi_{\theta}}(s,a)\}].$$

 $\Rightarrow q(\theta, s) \Rightarrow$ normalizing constant, ensures $\pi^{\oplus}, \pi^{\ominus}$ valid distributions Note: no score function by differentiating w.r.t. policy directly! \Rightarrow uses Hahn-Jordan signed decomposition of measures Contribution: Policy search via new expression for policy gradient \Rightarrow establish almost sure convergence of these algs. \Rightarrow yields lower variance gradient estimates almost all polices

 \Rightarrow Observe faster convergence on Pendulum w/ Gaussian policy

Prior Work

⇒ Felisa J Vazquez-Abad, Vikram Krishnamurthy, "Policy gradient stochastic approximation algorithms for adaptive control of constrained time varying Markov decision processes", IEEE CDC 2003.

Felisa J Vazquez-Abad, Vikram Krishnamurthy, "Implementation of Gradient Estimation to a Constrained Markov Decision Problem,"

IEEE CDC 2003.

OPTIMIZATION OF		
STOCHASTIC MODELS The Interface Between Simulation and Optimization		
Georg Ch. Pflug		
	P	

Weak Derivative Parameterization

Consider Gaussian policy $\pi_{\theta}(\cdot | s) = \mathcal{N}(\theta^T \phi(s), \sigma^2)$ \Rightarrow mean is modulated by the optimization parameter θ . Jordan decomposition is as follows:

$$\nabla \pi_{\theta}(\cdot \mid s) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{(a - \theta^T \phi(s))^2}{2\sigma^2}\right) \times \frac{1}{\sigma^2} (a - \theta^T \phi(s)) \cdot \phi(s).$$
$$:= g(\theta, s) \left(\pi_{\theta}^{\oplus}(\cdot \mid s) - \pi_{\theta}^{\ominus}(\cdot \mid s)\right),$$

 \Rightarrow constant $g(\theta,s)=\frac{\phi(s)}{2\sqrt{2\pi\sigma^2}}.$ Positive & negative measures:

$$\pi_{\theta}^{\oplus}(\cdot \mid s) = \frac{1}{\sigma^2} (a - \theta^T \phi(s)) \cdot \exp\left(\frac{(a - \theta^T \phi(s))^2}{2\sigma^2}\right),$$

$$\pi_{\theta}^{\ominus}(\cdot \mid s) = \frac{1}{\sigma^2} (\theta^T \phi(s) - a) \cdot \exp\left(\frac{(a - \theta^T \phi(s))^2}{2\sigma^2}\right).$$

Note $\pi_{\theta}^{\oplus}(\cdot | s)$ and $\pi_{\theta}^{\ominus}(\cdot | s)$ are orthogonal Rayleigh distributions $\Rightarrow \pi_{\theta}^{\oplus}(\cdot | s)$ on $\mathbb{1}(a > \theta^T \phi(s)); \pi_{\theta}^{\ominus}(\cdot | s)$ domain $\mathbb{1}(a < \theta^T \phi(s)).$

Bhatt, Koppel, Krishnamurthy

Policy Search with Weak Derivatives

Unbiasedly estimate $Q_{\pi_{\theta}^{\oplus}}(s, a)$ and $Q_{\pi_{\theta}^{\oplus}}(s, a)$ [Paternain 2018]: \Rightarrow Draw $T' \sim \text{Geom}(1 - \gamma)$, i.e., $P(T' = t) = (1 - \gamma)\gamma$ \Rightarrow Monte Carlo rollout $\mathcal{R}^{\oplus} = (s_0^{\oplus}, a_0^{\oplus}, \cdots, s_{T'}^{\oplus}, a_{T'}^{\oplus})$ and $\mathcal{R}^{\ominus} = (s_0^{\ominus}, a_0^{\ominus}, \cdots, s_{T'}^{\ominus}, a_{T'}^{\ominus})$ associated w/ positive/negative measures

$$\hat{Q}_{\pi^{\oplus}_{\theta}}(s,a) = \sum_{t=0}^{T'} \gamma^{t} R(s^{\oplus}_{t}, a^{\oplus}_{t}) | s_{0} = s, a_{0} = a$$
$$\hat{Q}_{\pi^{\oplus}_{\theta}}(s,a) = \sum_{t=0}^{T'} \gamma^{t} R(s^{\oplus}_{t}, a_{t} \ominus) | s_{0} = s, a_{0} = a$$

Policy Search with Weak Derivatives

Unbiasedly estimate $Q_{\pi_{\theta}^{\oplus}}(s, a)$ and $Q_{\pi_{\theta}^{\oplus}}(s, a)$ [Paternain 2018]: \Rightarrow Draw $T' \sim \text{Geom}(1 - \gamma)$, i.e., $P(T' = t) = (1 - \gamma)\gamma$ \Rightarrow Monte Carlo rollout $\mathcal{R}^{\oplus} = (s_0^{\oplus}, a_0^{\oplus}, \cdots, s_{T'}^{\oplus}, a_{T'}^{\oplus})$ and $\mathcal{R}^{\ominus} = (s_0^{\ominus}, a_0^{\ominus}, \cdots, s_{T'}^{\ominus}, a_{T'}^{\ominus})$ associated w/ positive/negative measures

$$\hat{Q}_{\pi_{\theta}^{\ominus}}(s,a) = \sum_{t=0}^{T'} \gamma^{t} R(s_{t}^{\oplus}, a_{t}^{\oplus}) | s_{0} = s, a_{0} = a$$
$$\hat{Q}_{\pi_{\theta}^{\ominus}}(s,a) = \sum_{t=0}^{T'} \gamma^{t} R(s_{t}^{\ominus}, a_{t}^{\ominus}) | s_{0} = s, a_{0} = a$$

- Draw (s, a) from $\rho_{\theta}(\cdot, \cdot)$: \Rightarrow Draw $T \sim \text{Geom}(1 - \gamma)$
- \Rightarrow Rollout a trajectory $(s_0, a_0, s_1, \cdots, s_T, a_T)$
- \Rightarrow Evaluate the gradient at (s_T, a_T)

$$\hat{\nabla}J(\theta) = \frac{g(\theta_T, s_T)}{1 - \gamma} \left[\hat{Q}_{\pi_{\theta}^{\oplus}}(s_T, a_T) - \hat{Q}_{\pi_{\theta}^{\ominus}}(s_T, a_T) \right]$$

Policy Search with Weak Derivatives

Unbiasedly estimate $Q_{\pi_{\theta}^{\oplus}}(s, a)$ and $Q_{\pi_{\theta}^{\oplus}}(s, a)$ [Paternain 2018]: \Rightarrow Draw $T' \sim \text{Geom}(1 - \gamma)$, i.e., $P(T' = t) = (1 - \gamma)\gamma$ \Rightarrow Monte Carlo rollout $\mathcal{R}^{\oplus} = (s_0^{\oplus}, a_0^{\oplus}, \cdots, s_{T'}^{\oplus}, a_{T'}^{\oplus})$ and $\mathcal{R}^{\ominus} = (s_0^{\ominus}, a_0^{\ominus}, \cdots, s_{T'}^{\ominus}, a_{T'}^{\ominus})$ associated w/ positive/negative measures

$$\hat{Q}_{\pi_{\theta}^{\oplus}}(s,a) = \sum_{t=0}^{T'} \gamma^{t} R(s_{t}^{\oplus}, a_{t}^{\oplus}) \left| s_{0} = s, a_{0} = a \right|$$
$$\hat{Q}_{\pi_{\theta}^{\oplus}}(s,a) = \sum_{t=0}^{T'} \gamma^{t} R(s_{t}^{\oplus}, a_{t} \ominus) \left| s_{0} = s, a_{0} = a \right|$$

- Draw (s, a) from $\rho_{\theta}(\cdot, \cdot)$: \Rightarrow Draw $T \sim \text{Geom}(1 - \gamma)$
- \Rightarrow Rollout a trajectory $(s_0, a_0, s_1, \cdots, s_T, a_T)$
- \Rightarrow Evaluate the gradient at (s_T, a_T)

$$\hat{\nabla}J(\theta) = \frac{g(\theta_T, s_T)}{1 - \gamma} \left[\hat{Q}_{\pi_{\theta}^{\oplus}}(s_T, a_T) - \hat{Q}_{\pi_{\theta}^{\ominus}}(s_T, a_T) \right]$$

Policy Gradient update: $\theta_{k+1} = \theta_k + \alpha_k \hat{\nabla} J(\theta_k)$

Bhatt, Koppel, Krishnamurthy

Policy Gradient using Weak Derivatives for Reinforcement Learning

Asymptotic convergence to stationary points:

Theorem (Convergence with Diminishing Stepsize)

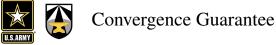
Let $\{\theta_k\}_{k\geq 0}$ be the sequence of parameters of the policy π_{θ_k} given by RPG. If the stepsize $\{\alpha_k\}$ satisfies

$$\sum_{k=0}^{\infty} \alpha_k = \infty, \quad \sum_{k=0}^{\infty} \alpha_k^2 < \infty,$$

then we have $\theta_k \to \theta^*$ where θ^* satisfies $J(\theta^*) = 0$

Avoid assumption on boundedness of iterates

 \Rightarrow violated for most parameterizations, including Gaussian



Convergence rate with diminishing stepsize

Theorem (Rate with Diminishing Stepsize)

Let $\{\theta_k\}_{k\geq 0}$ be the sequence of parameters of the policy π_{θ_k} . Let the stepsize be $\alpha_k = k^{-a}$ where $a \in (0, 1)$. Let

$$K_{\epsilon} = \min\left\{k : \inf_{0 \le m \le k} \mathbb{E}[\|\nabla J(\theta_m)\|^2] \le \epsilon\right\} \le \mathcal{O}(\epsilon^{-\frac{1}{2}})$$

 \Rightarrow Recover the $O(1/\sqrt{k})$ optimal rate of SGA for nonconvex opt.

Convergence Guarantee

Corollary

Let γ denote the discount factor and K_{ϵ} denote the iteration complexity. The average sample complexity

$$\left(\frac{1+\gamma}{1-\gamma}\right)K_{\epsilon}.$$

Number of samples needed depends on discount factor

Convergence Guarantee

Theorem

The expected variance of the gradient estimates $\hat{\nabla} J(\theta)$ obtained using weak derivatives is given as:

$$\mathbb{E}\left\{\operatorname{var}^{WD}(\hat{\nabla}J(\theta)\right\} \leq \frac{2 \cdot M^2 \cdot G_{WD}}{(1-\gamma)^5},$$

where $G_{WD} = \mathbb{E}_{s \sim \pi_{\theta}} (||g(\theta, s)||^2)$. On the other hand, if score function is used instead of weak derivatives, the variance is

$$\mathbb{E}\left\{\operatorname{var}^{SF}(\hat{\nabla}J(\theta))\right\} \leq \frac{M^2 \cdot G_{SF}}{(1-\gamma)^5}$$

where $G_{SF} = \mathbb{E}_{(s,a) \sim \pi_{\theta}(a \mid s)} \left\{ \| \nabla \pi_{\theta}(a \mid s) \|^2 \right\}.$

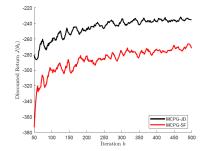
Corollary

For Gaussian policy
$$\pi_{\theta}(\cdot | s) = \mathcal{N}(\theta^T \phi(s), \sigma^2)$$
, we have $G_{WD} = \frac{1}{2 \cdot \pi} G_{SF}$.

Bhatt, Koppel, Krishnamurthy

Pendulum Experiments

Compare with Score function \Rightarrow akin to REINFORCE [Williams '92] \Rightarrow fixed Q function horizon estimate



 \Rightarrow lower variance translates to faster learning in practice \Rightarrow further experiments needed, hopefully during Sujay's postdoc

Policy gradient method \Rightarrow foundation of many RL methods

 \Rightarrow scales gracefully to large problems, but afflicted with high variance

We derive new policy gradient theorem based on Hahn-Jordan decomp. \Rightarrow new policy search algorithms from this foundation \Rightarrow provably convergent and lower variance than score function

Experimentally observe these properties of policy search on pendulum \Rightarrow solidified foundation for additional variance reduction techniques

On Open Problems

Use these results to derive variance-reduced actor-critic ⇒ associated variance-reduced versions using weak derivatives Beyond i.i.d. sampling which doesn't hold in practice ⇒ address Markov noise, tune step-size to Markov mixing rates Estimate MDP transition kernel online to mitigate explore/exploit ⇒ links to Van Roy's "Randomized Value functions"

S. Bhatt, A. Koppel, V Krishnamurthy, "Policy Gradient using Weak Derivatives for Reinforcement Learning," in *IEEE Conference on Decision and Control*, Nice, France, Dec. 11-13, 2019.