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Reinforcement Learning

I Reinforcement learning: data-driven control
⇒ unknown system model/cost function
⇒ parameterize policy/cost as stat. model for high dimensional spaces

I Recent successes:
⇒ AlphaGo Zero [Silver et al. ′17]
⇒ Bipedal walker on terrain [Heess et al. ′17]
⇒ Personalized web services [Theocharous et al. ′15]
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Problem Formulation

I Markov decision process (MDP) (S,A,P, R, γ)

⇒ State space S, action space A (high-dim. or even continuous)
⇒Markov transition kernel P(s′

∣∣ s, a) : S ×A → P(S)

⇒ Reward R : S ×A → R, discount factor γ ∈ (0, 1)

I Stochastic policy π : S → P(A), i.e., at ∼ π(·
∣∣ st)

I Infinite-horizon setting value function:

V (s) = E
( ∞∑
t=0

γt ·R(st, at)

∣∣∣∣ s0 = s

)
,

I Goal: find {at = π(st)} to maximize Vπ(s) := E[V (s)
∣∣ a ∼ π(s)]

I maxπ∈Π Vπ(s) where Π is some family of distributions
⇒ E.g., Gaussian π = πθ w/ θ ∈ Rd ⇒ πθ(·

∣∣ s) = N (φ(s)>θ, σ2)

⇒ Define action-state value (Q) function Qπ(s, a) = E[Vπ(s)
∣∣ a0 = a]
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Literature Landscape
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Policy Search is High Variance

I From Alexander Irpan’s blog, software engineer at Google Brain:

I High sample path variance precludes practicality of Deep RL
⇒ 30% failure rate is counted as working, publishable
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Policy Gradient Theorem

I Policy gradient formula [Sutton ′00]

∇J(θ) =
1

1− γ
· E(s,a)∼ρθ(·,·)

[
∇ log πθ(a

∣∣ s) ·Qπθ (s, a)
]
.

⇒ ρθ(s, a) ⇒ ergodic dist. of Markov chain for fixed policy:

ρθ(s, a) = (1− γ)

∞∑
t=0

γtp(st = s
∣∣ s0, πθ) · πθ(a

∣∣ s).
I Estimating Score function: O(N) variance. for N samples
⇒ See POMDPs, V. Krishnamurthy, Cambridge University Press, 2016
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Policy Grad. Thm. w/ Weak Derivatives

I Policy gradient formula [Bhatt et al ′19]

∇J(θ) =
1

1− γ
[E(s,a)∼π⊕θ (·,·){g(θ, s) ·Qπθ (s, a)}

− E(s,a)∼π	θ (·,·){g(θ, s) ·Qπθ (s, a)}].

⇒ g(θ, s) ⇒ normalizing constant, ensures π⊕, π	 valid distributions
I Note: no score function by differentiating w.r.t. policy directly!
⇒ uses Hahn-Jordan signed decomposition of measures

I Contribution: Policy search via new expression for policy gradient
⇒ establish almost sure convergence of these algs.
⇒ yields lower variance gradient estimates almost all polices
⇒ Observe faster convergence on Pendulum w/ Gaussian policy

Bhatt, Koppel, Krishnamurthy Policy Gradient using Weak Derivatives for Reinforcement Learning 9



Prior Work

I ⇒ Felisa J Vazquez-Abad, Vikram Krishnamurthy, “Policy gradient stochastic approximation algorithms for adaptive control of

constrained time varying Markov decision processes” , IEEE CDC 2003.

I ⇒ Felisa J Vazquez-Abad, Vikram Krishnamurthy, “Implementation of Gradient Estimation to a Constrained Markov Decision Problem,”

IEEE CDC 2003.
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Weak Derivative Parameterization

I Consider Gaussian policy πθ(·
∣∣ s) = N (θTφ(s), σ2)

⇒ mean is modulated by the optimization parameter θ.
I Jordan decomposition is as follows:

∇πθ(·
∣∣ s) =

1√
2πσ2

exp

(
(a− θTφ(s))2

2σ2

)
× 1

σ2
(a− θTφ(s)) · φ(s).

:= g(θ, s)
(
π⊕θ (·

∣∣ s)− π	θ (·
∣∣ s)) ,

⇒ constant g(θ, s) = φ(s)

2
√

2πσ2
. Positive & negative measures:

π⊕θ (·
∣∣ s) =

1

σ2
(a− θTφ(s)) · exp

(
(a− θTφ(s))2

2σ2

)
,

π	θ (·
∣∣ s) =

1

σ2
(θTφ(s)− a) · exp

(
(a− θTφ(s))2

2σ2

)
.

I Note π⊕θ (·
∣∣ s) and π	θ (·

∣∣ s) are orthogonal Rayleigh distributions

⇒ π⊕θ (·
∣∣ s) on 1(a > θTφ(s)); π	θ (·

∣∣ s) domain 1(a < θTφ(s)).
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Policy Search with Weak Derivatives

I Unbiasedly estimate Qπ⊕θ (s, a) and Qπ	θ (s, a) [Paternain 2018]:
⇒ Draw T ′ ∼ Geom(1− γ), i.e., P (T ′ = t) = (1− γ)γ
⇒Monte Carlo rolloutR⊕ = (s⊕0 , a

⊕
0 , · · · , s

⊕
T ′ , a

⊕
T ′) and

R	 = (s	0 , a
	
0 , · · · , s

	
T ′ , a

	
T ′) associated w/ positive/negative measures

Q̂π⊕θ
(s, a) =

T ′∑
t=0

γtR(s⊕t , a
⊕
t )
∣∣s0 = s,a0 = a

Q̂π	θ
(s, a) =

T ′∑
t=0

γtR(s	t , at	)
∣∣s0 = s,a0 = a

I Draw (s, a) from ρθ(·, ·):
⇒ Draw T ∼ Geom(1− γ)
⇒ Rollout a trajectory (s0, a0, s1, · · · , sT , aT )
⇒ Evaluate the gradient at (sT , aT )

∇̂J(θ) =
g(θT , sT )

1− γ

[
Q̂π⊕θ

(sT , aT )− Q̂π	θ (sT , aT )
]

I Policy Gradient update: θk+1 = θk + αk∇̂J(θk)
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Convergence Guarantee

I Asymptotic convergence to stationary points:

Theorem (Convergence with Diminishing Stepsize)
Let {θk}k≥0 be the sequence of parameters of the policy πθk given by RPG.
If the stepsize {αk} satisfies

∞∑
k=0

αk =∞,
∞∑
k=0

α2
k <∞,

then we have θk → θ∗ where θ∗ satisfies J(θ∗) = 0

I Avoid assumption on boundedness of iterates
⇒ violated for most parameterizations, including Gaussian
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Convergence Guarantee

I Convergence rate with diminishing stepsize

Theorem (Rate with Diminishing Stepsize)
Let {θk}k≥0 be the sequence of parameters of the policy πθk . Let the
stepsize be αk = k−a where a ∈ (0, 1). Let

Kε = min
{
k : inf

0≤m≤k
E[‖∇J(θm)‖2] ≤ ε

}
≤ O(ε−

1
2 )

⇒ Recover the O(1/
√
k) optimal rate of SGA for nonconvex opt.
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Convergence Guarantee

Corollary
Let γ denote the discount factor and Kε denote the iteration complexity. The
average sample complexity (

1 + γ

1− γ

)
Kε.

I Number of samples needed depends on discount factor
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Convergence Guarantee

Theorem
The expected variance of the gradient estimates ∇̂J(θ) obtained using weak
derivatives is given as:

E
{

varWD(∇̂J(θ)
}
≤ 2 ·M2 ·GWD

(1− γ)5
,

where GWD = Es∼πθ
(
‖g(θ, s)‖2

)
. On the other hand, if score function is

used instead of weak derivatives, the variance is

E
{

varSF (∇̂J(θ))
}
≤ M2 ·GSF

(1− γ)5
,

where GSF = E
(s,a)∼πθ(a

∣∣ s) {‖∇πθ(a ∣∣ s)‖2}.

Corollary
For Gaussian policy πθ(·

∣∣ s) = N (θTφ(s), σ2), we have GWD = 1
2·πGSF .
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Pendulum Experiments

I Compare with Score function ⇒ akin to REINFORCE [Williams ′92]
⇒ fixed Q function horizon estimate

⇒ lower variance translates to faster learning in practice
⇒ further experiments needed, hopefully during Sujay’s postdoc
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Conclusion

I Policy gradient method ⇒ foundation of many RL methods
⇒ scales gracefully to large problems, but afflicted with high variance

I We derive new policy gradient theorem based on Hahn-Jordan decomp.
⇒ new policy search algorithms from this foundation
⇒ provably convergent and lower variance than score function

I Experimentally observe these properties of policy search on pendulum
⇒ solidified foundation for additional variance reduction techniques
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On Open Problems

I Use these results to derive variance-reduced actor-critic
⇒ associated variance-reduced versions using weak derivatives

I Beyond i.i.d. sampling which doesn’t hold in practice
⇒ address Markov noise, tune step-size to Markov mixing rates

I Estimate MDP transition kernel online to mitigate explore/exploit
⇒ links to Van Roy’s “Randomized Value functions”
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