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The State of Distributed Learning
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Non-linear Heterogeneous Networked Learning
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Existing methods don’t apply
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Online Non-linear Heterogeneous Learning
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Contribution

I Proposed a non-linear function learning algorithm considering

⇒ Online settings

⇒ Network heterogeneity

I Non-asymptotic bound on the model complexity of the algorithm

I Characterizing the optimality gap in terms of

⇒ Model complexity

⇒ Number of iterations

I Null constraint violation (Conservative approach)
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Works on improving Constraint Violation rate
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Comparison with previous work

I Here we have considered a different approach to solve the problem

⇒ ensuring strict feasibility

⇒ Without affecting the optimality gap result

I This performance improvement was possible by considering the conservative approach

I Instead of the original problem, we actually solve a ν-tightened problem with a smaller
constraint set.

I As long as the original problem is strongly feasible and we set ν appropriately

⇒ Such a tightening only leads to O(T−1/2) suboptimality

⇒ thus the overall optimality gap only changes by a constant factor.

I A regularization of the dual update is introduced in terms of problem constants

⇒ Similar tightest sub-optimality rate (O(T−1/2))

⇒ Ensuring null constraint violation in contrast to O(T−1/4) rate for existing settings

Pradhan, H., Bedi, A. S., Koppel, A., Rajawat, K. (2018, November). Exact nonparametric decentralized online optimization. In 2018 IEEE Global Conference on Signal and
Information Processing (GlobalSIP) (pp. 643-647). IEEE.
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Outline

I Approach:

⇒ Hypothesized non-linear function in kernel Hilbert space

⇒ Consider the conservative version (strict feasibility)

⇒ Form stochastic lagrangian

⇒ Apply stochastic primal dual method

⇒ Take subspace projection (to handle memory growth)

I Sublinear convergence

⇒ O(T−1/2) for primal optimality

⇒ Zero constraint violation

I Generalizes existing rate results for primal-dual method

⇒ to case of non-linear statistical models

I Application: Estimation of climatological fields

⇒ Salinity and temperature measurement in Gulf of Mexico
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The Problem

I Symmetric, connected and directed network of agents G = (V, E)

I Learning nonlinear statistical models is equivalent to finding

⇒ f : X → Y, such that y = f (x)

I Loss ` : H×X × Y → R penalize deviations between f (x), y

I Encoded by a convex proximity function hij(fi (xi ), fj(xi ))

⇒ incentivizes nearby agents to make similar decisions

I Yields the constrained functional stochastic program:

f? = argmin
{fi}∈H

S(f) :=
∑
i∈V

(
Exi ,yi

[
`i (fi

(
xi ), yi

)]
+
λ

2
‖fi‖2

H

)
s.t. Hij(fi , fj) := Exi

[
hij(fi (xi ), fj(xi ))

]
≤ γij , for all j ∈ ni . (1)
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Conservative Version of (1)

I Conservative version: ‘ν’ is added to the constraint in (1):

f?ν = argmin
{fi}∈H

S(f)

s.t. Hij(fi , fj) + ν ≤ γij , for all j ∈ ni , (2)

I This allows us to establish approximate algorithmic solutions to (2)

⇒ while ensuring constraints in (1) may be exactly satisfied.
I Optimality gap: O(T−1/2) (constraints satisfied in the long run).
I Note: Optimality gap not compromised as opposed to O(T−1/4)

Lemma

For 0 ≤ ν ≤ ξ/2, it holds that:

S(f∗ν )− S(f ∗) ≤ O(ν) (3)

Mahdavi, M., Jin, R., Yang, T. (2012). Trading regret for efficiency: online convex optimization with long term constraints. The Journal of Machine Learning Research, 13(1),
2503-2528.
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Learning with Representer Theorem

Corollary

Consider the sample average approximation of (1), and its associated Lagrangian relaxation.
The each ith component of the solution to the resulting saddle-point problem can be expressed
as

f ∗i =
T∑
t=1

wi,tκ(xi,t , .) (4)

where wi,t are real-valued coefficients.

I Stochastic augmented Lagrangian function of (2) at time t

L̂t(f ,µ) :=
∑
i∈V

[
`i (fi

(
xi,t), yi,t

)
+
λ

2
‖fi‖2

H +
∑
j∈ni

{[
µij(hij(fi (xi,t), fj(xi,t)) + ν − γij)

]
− δη

2
µ2
ij

}]
(5)

where µ is a lagrange multiplier, with µij defined for each (i , j) ∈ E .
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Functional Derivative

I Functional stochastic gradient of local loss in (5):

`′i (fi (xi,t), yi,t) :=∇fi `i (fi (xi,t), yi,t)(·) =
∂`i (fi (xi,t), yi,t)

∂fi (xi,t)

∂fi (xi,t)

∂fi
(·) (6)

I Using the reproducing property of the kernel we obtain

∂fi (xi,t)

∂fi
=
∂〈fi , κ(xi,t , ·)〉H

∂fi
= κ(xi,t , ·) (7)

I Now the full gradient result can be written as

∇fi L̂t(ft , µt) = `′i (fi (xi,t), yi,t)κ(xi,t , ·)+ λfi +
∑
j∈ni

µijh
′
ij(fi (xi,t), fj(xi,t))κ(xi,t , ·) (8)
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Algorithm

I loop in parallel for agent i ∈ V
I Observe local training example realization (xi,t , yi,t)

I Send xi,t to the neighboring nodes, j ∈ ni and receive fj,t(xi,t)

I Receive xj,t from the neighbouring nodes, j ∈ ni and send fi,t(xj,t)

I Stochastic primal descent step on Lagrangian:

fi,t+1= fi,t(1−ηλ)−η

[̀
′
i (fi,t(xi,t), yi,t)+

∑
j∈ni

µijh
′
ij(fi,t(xi,t), fj,t(xi,t))

]
κ(xi,t , ·) (9)

I Stochastic dual ascent step on Lagrangian:

µij,t+1 =
[
µij,t(1−δη2)+η

(
hij(fi,t(xi,t),fj,t(xi,t))−γij + ν

)]
+

(10)
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Parametric update of weights and dictionary

I Using fi,t(x) =
∑t−1

n=1 wi,nκ(xi,n, x) = wT
i,tκXi,t (x), V parallel parametric updates on both

kernel dictionaries Xi and wi are

Xi,t+1 = [Xi,t , xi,t ] , (11)

[wi,t+1]u=


(1− ηλ)[wi,t ]u, 0 ≤ u ≤ t − 1

−η
(
`′i (fi,t(xi,t),yi,t)

+
∑

j∈ni µijh
′
ij(fi,t(xi,t), fj,t(xi,t))

)
, u = t

I Data points Mi,t grows by one each time (curse of kernelization).

I Proj. Funct. Update: Onto HDi,t+1 = span{κ(di,n, ·)}Mt+1

n=1 ⊂ H

fi,t+1 :=PHDi,t+1

[
fi,t − η∇fi L̂t(ft , µt)

]
. (12)
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Kernel Matching Pursuit

I Fix approximation error ε

I f̃t+1 = ft − η∇fi L̂t(ft , µt)

I Remove kernel element smallest error

I Project f̃t+1 onto resulting RKHS

I Repeat until error is larger than ε
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Non-asymptotic bound on Model Order

Theorem

Let Mi,t denote the model order representing the number of dictionary elements in Di,t . Then

with constant step size η = 1/
√
T and compression budget ε, for a Lipschitz Mercer kernel κ

on a compact set X ⊂ Rp, there exists a constant β such that for any training set {xi,t}∞t=1,
Mi,t satisfies

Mi,t ≤ β

(
RM

α

)2p

, (13)

where α = ε/η, RM = C + LhERi,t and Ri,t = maxj∈ni |µij,t |. The total model order, Mt of the
network consisting of N nodes is then

Mt =
N∑
i=1

Mi,t . (14)
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Convergence Analysis

Theorem

With S(f) as the objective and f∗ defined in (1), considering constant step-size η = T−1/2, and

ν = ζT−1/2 + Λα, where ζ ≥ 1
2

[
R2
B + (1 + δ)

(
2 + 2

(
4VRB(CX+λRB)

ξ

)2)
+ K

]
and Λ ≥ 4VRB.

I The average expected sub-optimality decays as

1

T

T∑
t=1

E[S(ft)− S(f?)] ≤ O(T−1/2 + α). (15)

I Moreover, the average of aggregate constraint is met, i.e.,

1

T

T∑
t=1

E
[
Hij(fi,t , fj,t)− γij

]
≤ 0, for all (i , j) ∈ E . (16)
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Estimating Temperature and Salinity of Ocean

I Climatological fields are obtained for a particular latitude and longitude in the Gulf of
Mexico

⇒ for standard depths starting from 0 meters to 5000 meters

I The experiment is carried out considering 50 nodes

I Neighbouring node: if the distance is less than 1000 kilometers

I Proximity parameter: γij = exp(−dist(i , j)/1000)

I Step-size, η = 0.01 and regularizers λ, δ are set to 10−5

I Bandwidth parameter of the Gaussian kernel is set at σ = 50

I Parsimony constant is fixed at two values, P = 0.4 and 40.

⇒ For centralized approach: P = 0.001
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Temperature Estimation

I Convergence of global objective and network disagreement
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Salinity Estimation

I Convergence of global objective and network disagreement

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

t, number of samples processed
(c) Salinity (Global objective)

G
lo
b
al

O
b
je
ct
iv
e

 

 

Sin, P=0.001, M=2372

Dist, P=40, M=31

Dist, P=0.4, M=39

0 500 1000 1500 2000 2500
10

−8

10
−6

10
−4

10
−2

10
0

t, number of samples processed
(d) Salinity (Network disag.)

N
et
w
or
k
D
is
ag

re
em

en
t

 

 

Dist, P=0.4

Dist, P=40

Pradhan, Bedi, Koppel, Rajawat Conservative Multi-agent Online Kernel Learning in Heterogeneous Networks 28



Conclusion and Future Work

I Focused on online learning

⇒ Decentralized heterogeneous networks

⇒ Non-linear statistical models

⇒ Conservative approach

⇒ Optimality in terms of model complexity and iterations

I Proposed new variant of projected stochastic primal dual method

⇒ Convergence to the optimum

⇒ Finite growth of model order

⇒ Observed good empirical performance

I Future Work:

⇒ Asynchrony

⇒ Reduce complexity of projections
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Appendix: Supervised Learning Background

I (x, y) ∈ X × Y is random pair ⇒ training examples

I ` :W → R convex loss (W ⊂ Rp), merit of statistical model

I Find parameters w∗ ∈ Rp that minimize expected risk L(w)

w∗ := argmin
w

L(w) := argmin
w

Ex,y[`(w>x, y)]

I Convex Optimization Problem for linear statistical models

⇒ e.g., y = wTx ∈ R or y = sgn(wTx) ∈ {−1, 1}
I Solve with favorite descent method ⇒ Good Performance
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Appendix: Easy to Implement over Networks

I Symmetric, connected and directed network of agents G = (V, E)

I The nodes aims to make inferences from local data

I |V| = V nodes, |E| = M edges, and ni := {j : (i , j) ∈ E}
I Agent i ∈ V has a local copy of the classifier wi

⇒ Observes some training examples ⇒ (xi , yi ) ∈ Xi × Yi

w∗ := argmin
w∈Rp|V|

|V|∑
i=1

Exi ,yi

[
`(w>i xi , yi )

]
s.t. wi = wj for all j ∈ ni

I Convex Optimization Problem for linear statistical models

I Solve with saddle point algorithms or penalty methods

⇒ Can be implemented in a distributed fashion
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Appendix: How to control the Model order?

I Project (9) onto a lower dimensional subspace HD ⊆ H
I HD is represented by a dictionary D = [d1, . . . , dM ] ∈ Rp×M .

I HD = {f : f (·) =
∑M

n=1 wnκ(dn, ·) = wTκD(·)}, {dn} ⊂ {xu}u≤t .
I We denote the un-projected functional update as

f̃i,t+1 = fi,t − η∇fi L̂t(ft , µt) . (17)

where ∇fi L̂t(ft , µt) :=λfi,t +
[
`′i (fi,t(xi,t), yi,t)+

∑
j∈ni µijh

′
ij(fi,t(xi,t), fj,t(xi,t))

]
κ(xi,t , ·).

I f̃i,t+1 in form of dictionary and coefficient vector:

D̃i,t+1 = [Di,t , xi,t ] ,

[w̃i,t+1]u=

{
(1− ηλ)[wi,t ]u, for 0 ≤ u ≤ t − 1

−η
(̀
′
i (fi,t(xi,t),yi,t)+

∑
j∈ni µijh

′
ij(fi,t(xi,t), fj,t(xi,t))

)
, for u = t
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