

Joint Position and Beamforming Control via Alternating Nonlinear Least-Squares with a Hierarchical Gamma Prior

Anjaly Parayil, Amrit Singh Bedi, and Alec Koppel

CISD, CCDC Army Research Laboratory

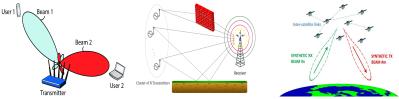
May 27, 2021

A. Parayil, A. S. Bedi, and A. Koppel

Distributed Transmit Beamforming

Transmits a signal over multiple antennas and adjusts their phase, add it constructively at the destination

ightarrow Common in satellite communications, radars, acoustics, etc



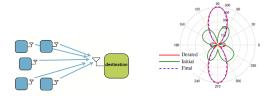
PC: Björnson E, Bengtsson M, Ottersten B. Optimal multiuser transmit beamforming: A difficult problem with a simple solution structure [lecture notes]. IEEE Signal Processing Magazine. 2014 Jun 13;31(4):142-8.

→ Distributed setting: improved security, interference reduction
 ⇒ Improved received signal-to-noise ratio (SNR)

A. Parayil, A. S. Bedi, and A. Koppel

Beam Synthesis: At a Glance

Consider *n* mobile agents at $[\mathbf{x}_i, \mathbf{y}_i]$ with omnidirectional antenna



 \Rightarrow $w_i \in \mathbb{C}$: excitation of node $(a_i \exp(j\alpha_i)), \theta, \alpha \in [0, 2\pi)$

 \Rightarrow *a_i*: signal amplitude, α_i : phase, *k*: wave number

 $\rightarrow\,$ Array Factor (AF) determines their ability to communicate

$$AF(\theta) = \sum_{i=0}^{n-1} w_i \, e^{i(kx_i \cos(\theta) + ky_i \sin(\theta))}$$

A. Parayil, A. S. Bedi, and A. Koppel

Problem Formulation

- \rightarrow Given N samples from an a priori unknown desired beam \mathbf{AF}_d
- \rightarrow How to match desired beam at given directions using *n* nodes?

$$\begin{split} \min_{\{\mathbf{r}_{i}, \mathbf{w}_{i}\}_{i=1}^{n}} \|\mathbf{A}\mathbf{F} - \mathbf{A}\mathbf{F}_{d}\|_{2}^{2},\\ \mathbf{A}\mathbf{F} = \mathbf{H}(\mathbf{r})\mathbf{w}, ([\mathbf{H}(\mathbf{r})]_{ml} : e^{jk(x_{l}\cos\theta_{m} + y_{l}\sin\theta_{m})}) \end{split}$$

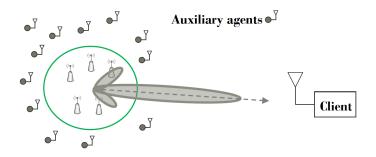
 \Rightarrow Adjust position and excitation of nodes to match desired beam

 \rightarrow Problem of interest:

 \Rightarrow Synthesis of array for desired pattern using set of mobile nodes

A. Parayil, A. S. Bedi, and A. Koppel

Problem Formulation



Minimize array elements filling the antenna aperture:

- ⇒ Reduced electronic beamforming cost
- ⇒ Reduction in power consumption, overall design complexity

\rightarrow How to select minimum agents out of given set for desired beam ?

A. Parayil, A. S. Bedi, and A. Koppel

Sparse beamforming: Beam synthesis with few agents as possible

 $\label{eq:constraint} \begin{array}{l} \rightarrow & \mbox{Reducing cardinality of active agent set} \\ \Rightarrow & \mbox{Minimizing agents with non-zero } \tilde{\bm{w}} \end{array}$

$$\min_{\widetilde{\mathbf{w}}} \|\widetilde{\mathbf{w}}\|_0, \text{ s.t. } \widetilde{\mathbf{AF}}_d = \Phi \widetilde{\mathbf{w}}$$

 $\Rightarrow \widetilde{\mathbf{AF}}_d \in \mathbb{C}^{2N}$: real and imaginary part of samples

 \Rightarrow Beam matching in real-imaginary space is linear

 \Rightarrow Equivalent to constrained ℓ_0 norm minimization

Sparse Beamforming: State of Art

 Convex Relaxations 	 Monte Carlo Sampling 	 Bayesian Approach
	ļ.	Ļ
 ✓ Formulates a constrained convex optimization with an equivalent convex cost function ✓ Prone to get stuck at local minima ✓ ℓ_p norm with p≈ 1 results in different global minima ✓ Sparse enough ℓ₂ norm suffers from numerous local minima 	 Seek close-to-exact solutions Consistency requires number of samples to approach infinity Computationally complex 	 ✓ Uses Empirical priors with flexible parameters ✓ Better mimic ℓ₀ ✓ Better route to sparsity ✓ Settle to the sparsest solution (at least in the absence of noise) and possess fewer local minima

Bayesian Approach: Overview

Gaussian likelihood model for beamforming with N samples

$$p(\widetilde{\mathsf{AF}}_d|\widetilde{\mathbf{w}}) \propto (2\pi\sigma^2)^{-N/2} e^{-rac{\|\widetilde{\mathsf{AF}}_d - \Phi\widetilde{\mathbf{w}}\|_2^2}{2\sigma^2}}$$

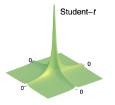
 \Rightarrow Error in beam matching assumed as Gaussian distribution

 $\rightarrow\,$ Hierarchical approach: prior distribution on $\tilde{\mathbf{w}}$ and hyperparameter, γ

$$\Rightarrow \boldsymbol{p}(\tilde{\boldsymbol{w}}_i|\gamma_i) \triangleq \mathcal{N}(\boldsymbol{0},\gamma_i), \, \boldsymbol{p}(\gamma_i^{-1}) = \operatorname{Gamma}(\gamma_i^{-1}|\boldsymbol{a},\boldsymbol{b})$$

 $\rightarrow \gamma_i$ estimates controls \tilde{w}_i

Bayesian Approach to Agent Selection



Prior, $p(\mathbf{w})$ for conventional SBL, Gaussian-Gamma Prior ¹

- → Guarantees maximally sparse solutions¹
 - ⇒ Exisiting approach consider fixed layouts
 - \Rightarrow Position of nodes bound reconstruction error
- $\rightarrow\,$ Accurate recovery with agent positions near to fictitious agents

¹M. E. Tipping, Sparse Bayesian Learning and the Relevance Vector Machine, JMLR, 2001 A. Parayil, A. S. Bedi, and A. Koppel Joint Position and Beamforming Control

Proposed Approach

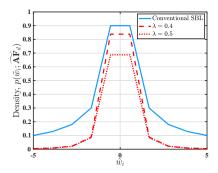
- ightarrow Any other choice of hierarchical prior to further shrink agent set ?
 - \Rightarrow A sharper $\tilde{\mathbf{w}}$ distribution with a flat tail?
 - \Rightarrow Might lead to undesirable pruning of the active agents
 - \Rightarrow Increased error in beam matching
- $\rightarrow\,$ Joint position control with modified hierarchical prior

Proposed hierarchical prior for sharper $\tilde{\boldsymbol{w}}$

$$p(\tilde{w}_i|\gamma_i) = \mathcal{N}(0,\gamma_i), \ p(\gamma_i^{-1}) = \gamma_i^{1-a} e^{-b/\gamma_i}$$

 $\rightarrow \gamma_i = 0 \implies \tilde{w}_i = 0$ is null

 \rightarrow Equivalent to Gamma distribution for γ_i with $a = 1, b = \frac{\lambda}{2}$



$\rightarrow~\text{A}$ sharper $\tilde{\textbf{w}}$ distribution with a flat tail

A. Parayil, A. S. Bedi, and A. Koppel

ightarrow Marginal log-likelihood for γ obtained by marginalizing over $ilde{\mathbf{w}}$

$$\mathscr{L}(\gamma) = \underbrace{\log |\Sigma_{\widetilde{AF}_d}| + \widetilde{AF}_d^{\top} \Sigma_{\widetilde{AF}_d}^{-1} \widetilde{AF}_d}_{\text{Conventional SBL}} + \lambda \sum_{i}^{n} \gamma_i$$

- \rightarrow Additional term prunes active set effectively
- \rightarrow Expected maximization of likelihood for iterative updates of γ_i , \tilde{w}_i

Closed-form iterative updates for the hyperparameter γ and $\tilde{\mathbf{w}}$

$$\mu = \tilde{\mathbf{w}} = \mathbb{E}\left[\tilde{\mathbf{w}}|\widetilde{AF}_{d},\gamma_{*}\right] = \Gamma \Phi^{\top} \Sigma_{\widetilde{AF}_{d}}^{-1} \widetilde{AF}_{d}$$
(1)

$$\Sigma = \Gamma - \Gamma \Phi^{\top} \Sigma_{\widetilde{AF}_{d}}^{-1} \Phi \Gamma$$
(2)

$$\gamma_{i} = \frac{2\left(\mu_{i}^{2} + \Sigma_{ii}\right)}{1 + \sqrt{1 + 4\lambda(\mu_{i}^{2} + \Sigma_{ii})}}, \text{ for all } i = 1, \dots, n.$$
(3)

\rightarrow Additional pruning may lead to error in beam matching

How to reduce error from additional pruning?

- \rightarrow Refined node positioning to address over pruning
- \rightarrow With fixed **w**, the problem simplifies to

$$\min_{\mathbf{H}_{j}} \|\mathbf{AF}_{d} - \underbrace{[\mathbf{H}_{1} \ \dots \ \mathbf{H}_{n}]}_{\text{unknowns, } \mathbf{H}_{j} \in \mathbb{C}^{N}} \mathbf{W}\|_{2}^{2}$$

$$\rightarrow \text{ Convex set, } \mathcal{C}_1 \triangleq \left\{ \mathbf{H} \in \mathbb{R}^{N \times n} \text{s.t.for all } j = 1, \dots, n, \mathbf{H}_j^\top \mathbf{H}_j \leq N \right\}$$

\rightarrow Removes scaling ambiguity

 \rightarrow Constraints **H** onto a convex set with bounded norm

Refines agent positions using:

- ⇒ Iterative nonlinear least-squares in a constrained space
- \Rightarrow logarithmic transformation
- \rightarrow Sequential least square update of **H**_{*i*}

$$\begin{aligned} \mathbf{H}_{j}(i+1) &= \mathbf{H}_{j}(i) + \operatorname{diag}(\mathbf{w}(j)\mathbf{w}(j)^{\top})^{-1}(\mathbf{AF}_{d}\mathbf{w}(j)^{\top} - \mathbf{H}(i)\mathbf{w}\mathbf{w}(j)^{\top}), \\ \mathbf{H}_{j}(i+1) \leftarrow \frac{\mathbf{H}_{j}(i+1)}{\max(\|\mathbf{H}_{j}\|_{2}, N)} \end{aligned}$$

$$\mathcal{C}_{2} \triangleq \left\{ \mathbf{H} \in \mathbb{R}^{N \times n} \text{s.t.for all } j = 1, \dots, n, \exists \mathbf{r}_{j}^{*}, e^{jk * \langle \mathbf{r}_{j}^{*}, (\mathbf{d}_{\theta_{1}} + \dots + \mathbf{d}_{\theta_{N}}) \rangle} \prod_{i=1}^{n} \mathbf{H}(i, j) \right\}$$
$$\mathbf{H}_{j}(i+1) \leftarrow \Pi_{\mathcal{C}_{2}} \left[\mathbf{H}_{j}(i+1) \right], \text{ for all } j = 1, \dots, n$$

A. Parayil, A. S. Bedi, and A. Koppel

Alternating Nonlinear Least-Squares with

a Hierarchical Gamma Prior

 \rightarrow Iteratively updates agent excitation, removes inactive agents \rightarrow Position control of pruned agent set reduces error

```
Algorithm 1 Joint positioning and beamforming control
   procedure REQUIRE(N samples, AF_d, set of n (n > 
   N + 1) agents at r)
        Initialize : \lambda = 1, \Gamma = I_{n \times n}, and \tilde{w}
       Obtain H and AF from (4) - (5)
        while \|\mathbf{AF}_d - \mathbf{AF}\|_2 \ge \tilde{\epsilon} do
            Obtain \Phi and \overline{AF} from (7)
            while \epsilon has not converged do \triangleright sparse recovery
   for a given agent layout
                 compute \Sigma, \tilde{w} using (12),
                 update \gamma_i, \forall i = 1, \dots, n using (14)
                                                                                         Pruning agent set
             \tilde{\mathbf{w}} \leftarrow \mathbb{E}\left[\tilde{\mathbf{w}} | \widetilde{\mathbf{AF}}_d; \gamma_*\right] = \Gamma_* \Phi^\top \Sigma_{\widetilde{\mathbf{AF}}}^{-1} \widetilde{\mathbf{AF}}_d
            Remove agents with \tilde{w} = 0, update agent set and
   cardinality. n
             while H<sub>4</sub> not converged do ▷ Position control
   for given sparse set
                 for i=1 to n do
                      Compute constrained least square estimate,
   H_i using (21) - (22)
                                                                                       Position Control
                      Calculate (x_i^*, y_i^*) using (23)
                      Update \mathbf{H}_i using (27)
            Update r
   Return: w and r
```


Numerical Experiments

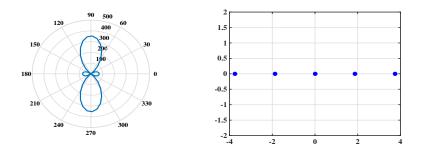


Figure: Desired Beam b) Set of fictitious agents used for desired beam

A set of 50 samples from the desired pattern by fictitious agents

- $\rightarrow\,$ Fictitious agents assumed to be in an equally spaced array
- \rightarrow Transmits at 40 MHz with $\alpha_m = \pi/4$, $a_m = 100$ for all $m = 1, \dots, 5$

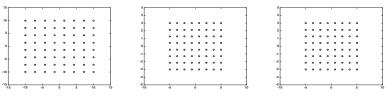
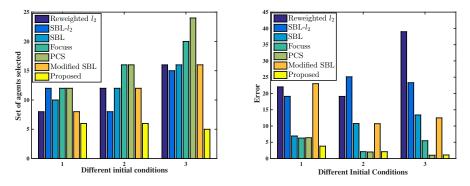


Figure: Initial agent layouts

ightarrow Different initial layouts with available set of 64 agents



Performance of Algorithm for three different initial layouts

 \rightarrow Selects minimum set of active agents

\rightarrow Achieves better beam matching

A. Parayil, A. S. Bedi, and A. Koppel

An interweaved iterative approach for sparse beamforming

- \rightarrow Adopts Bayesian framework for agent selection
- \rightarrow Offers maximal sparsity for a given agent layout
- ightarrow Hierarchical prior forces high probability mass near to the null
- \rightarrow Offers better shrinkage of the active agent set
- → Reduces pruning error with iterative projected block descent
- \rightarrow Offers better beam matching with lower computational complexity

A. Parayil, A. S. Bedi, and A. Koppel

Thank you