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Reinforcement Learning

Reinforcement learning: data-driven control

2

→ Recent successes:

⇒ AlphaGo3

⇒ Bipedal walker on terrain4

⇒ Personalized web services5

2
https://towardsdatascience.com/multi-agent-deep-reinforcement-learning-in-15-lines-of-code-using-pettingzoo-e0b963c0820b

3
Silver, D. et al., Mastering the game of Go without human knowledge. Nature 550, 354359 (2017).

4
Heess, N. et al., Learning continuous control policies by stochastic value gradients. In NeurIPS, 2015.

5
Theocharous, G., ”Ad recommendation systems for life-time value optimization.” In ICWWW, pp. 1305-1310. 2015.
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Multi-Agent Reinforcement Learning (MARL)

Reinforcement learning: Multi-Agent Settings N : number of agents

6

→ Different Settings7:

⇒ Cooperative → common payoffs – our focus

⇒ Competitive → contrasting payoffs

⇒ Mixed
6

https://towardsdatascience.com/multi-agent-deep-reinforcement-learning-in-15-lines-of-code-using-pettingzoo-e0b963c0820b
7

Zhang, Kaiqing et al., ”Multi-agent reinforcement learning: A selective overview of theories and algorithms.” arXiv:1911.10635 (2019).
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Mathematical Model

Markov decision process (MDP) (S,A,P, R, γ)8

⇒ State space S, action space A := A1 ×A2 × · · · ×An

⇒ Markov transition kernel P(s′
∣∣ s, a) : S×A→ P(S)

⇒ Reward r : S×A→ R

→ Stochastic policy π : S→ P(A), i.e., at ∼ π(·
∣∣ st)

→ Average reward setting value function:

max
π

Jπ(s) := lim
T→∞

1

T
E

[
T−1∑
t=0

[
1

n

n∑
i=1

ria,s

]∣∣∣s0 = s

]

→ Goal: find {at = π(st)} to maximize Vπ(s)

⇒ Define action-state value (Q) function Qπ(s, a) = E[Vπ(s)
∣∣ a0 = a]

8
Puterman, M. L. (2014). Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons.
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Context

Centralized solutions are available in literature

Our focus is decentralized training of joint action learners

Different multi-agent extensions are available
⇒ TD learning based methods9

⇒ Q learning based methods 10

⇒ Value iteration based 11

⇒ and Actor-Critic methods 12

Limitations:
⇒ All of these works are for discounted settings
⇒ Most of the works have only asymptotic guarantees
⇒ Parametrization → non-convex, stationary guarantees only
⇒ No Sample Complexity results in MARL settings for average reward
⇒ No decentralized solution available in MARL for average reward

9
Donghwan Lee et al’, Stochastic primal-dual algorithm for distributed gradient temporal difference learning. arXiv preprint, 2018

Thinh Doan et al’, Finite-time analysis of distributed td (0) with linear function approximation on MARL, ICML, pages 1626 1635, 2019.
10

Soummya Kar et al, Qd-learning: A collaborative distributed strategy for MARL through consensus+ innovations, IEEE TSP, 2013.
11

Hoi-To Wai et al’, Multi-agent reinforcement learning via double averaging primal-dual optimization. In in NeurIPS, pages 96499660, 2018.
12

Kaiqing Zhang et al., Fully decentralized multiagent reinforcement learning with networked agents, in ICML, pages 58725881, 2018.
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Problem Formulation

Average-cost Bellman equation

λπ + vs = max
a∈A

{∑
s′

ps,s′(a)ra,s +
∑
s′

ps,s′(a)vs′

}
, for all s ∈ S

Linear reformulation by [DeFarias2003]:

max
µ∈R|S|×|A|

∑
a∈A

µ(a)T r(a)

subject to:


∑
a∈A(I − PTa )µa = 0, for all s∑
s∈S,a∈A µ(s, a) = 1

µa,s ≥ 0 for all a, s

(0.1)

How to solve in a decentralized manner ?
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Primal-Dual Based Algorithms

Lagrangian function

min
v∈V

max
µ∈U

L(µ, v) :=

n∑
i=1

∑
a∈A

µ(a)T [(Pa − I)v + ri(a)]. (0.2)

where

V =
{
v ∈ R|S|

∣∣∣ ‖v‖∞ ≤ 2tmix

}
, (0.3)

U =

{
µ = (µa)a∈A

∣∣∣eTµ = 1, µ ≥ 0,
∑
a∈A

µ(a) ≥ 1√
τ |S|

e

}
, (0.4)

We propose to use DGD style updates for µ and v
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Proposed Decentralized Updates

Consensus step:

µ̃ti =

n∑
j=1

wtijµ
t
j , ṽti =

n∑
j=1

wtijv
t
j ,

Local updates:

µt+1
i = argmin

µi∈U
DKL(µi‖µ

t+ 1
2

i ),

where µ
t+ 1

2
i (s, a) =

µ̃ti(s, a) exp(∆t+1
i (s, a))∑

s′
∑
a′ µ̃

t
i(s, a) exp(∆t+1

i (s′, a′))

vt+1
i =ΠV[ṽti + α(es − es′)],

⇒ where ∆t+1
i = β

vti(s′)−vti(s)+rti(s,s′,a)−M
µ̃t
i(s,a)

.es,a
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Randomized Multi-agent Primal-dual (RMAPD) Algorithm

Input: ε > 0, S, A, t∗mix, τ

For each iteration t = 0, 1, 2, · · ·

For each agent i in parallel do

Observe the system state s

Execute action ai ∼ πi(·|s); observe a = (a1, . . . , aN )

Observe the local reward ris,s′(a)

Send primal and dual variables (µti, v
t
i) to neighbors

j ∈ ni, receive (µtj , v
t
j) from neighbors

Perform the consensus update

Perform the primal and dual variable local updates
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Theoretical Guarantees

Divided into three steps:

Step 1: Bound the consensus error

Step 2: Bound the duality gap

Step 3: From duality gap to primal average reward
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Step 1: Bound the Consensus Error

Let us define

µt =
1

n

n∑
i=1

µti, vt =
1

n

n∑
i=1

vti

⇒ Under some regulatory conditions, it holds that

(Dual variable) For constant step size α, for all i ∈ V and t ≥ 0, we have

E
[
‖vt −

(
1

n
eeT ⊗ I|S|

)
vt‖ | Ft

]
≤ O(

√
nα)

[
1 +

Γ(1− ρt−1)

1− ρ

]
⇒ where vt = [[vt1]T ; · · · ; [vtn]T ] ∈ Rn|S| stacks vti
⇒
(

1
nee

T ⊗ I|S|
)
vt stacks vt

(Primal variable) For constant step size β, for all i ∈ V and t ≥ 0

E
[
‖µt −

(
1

n
eeT ⊗ I|S||A|

)
µt‖ | Ft

]
≤ O(

√
nβ)

[
1 +

Γ(1− ρt−1)

1− ρ

]
,
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Step 2: Bound the Duality Gap

Two interesting assumptions (unique to this analysis)

⇒ Ergodic Decision Process: ∃τ > 1 such that

1√
τ |S|

e ≤ ξπ ≤
√
τ

|S|
e

where ξπ is the stationary distribution under policy π

⇒ Fast-Mixing Markov Chain: MDP is tmix-mixing in the sense that

tmix ≥ max
π

min

{
t ≥ 1

∣∣∣ ‖(Pπ)t(s, .)− ξπ‖TV ≤
1

4
, for all s ∈ S

}
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Step 2: Bound the Duality Gap

Consider the Lyapunov function Et given by

Et :=
1

n

n∑
i=1

DKL(µ∗‖µti) +
1

2|S|t2mix

∥∥vt − v∗∥∥2

⇒ Novel multi-agent extension13

⇒ Tracks both complementary slackness and consensus error
We prove the decrement lemma for Et as

E [Et+1 | Ft] ≤Et − β

[
λ∗ +

∑
a∈A

[
µt(a)T [(I − Pa)v∗ + ra]

]]
+ β2Õ

(
n|S||A|t2mix

)
+
β

n

n∑
i=1

∑
a∈A

[(
vt − vti

)T (
(I − Pa)T (µ̃ti(a)− µ∗(a))

)]
+
β

n

n∑
i=1

∑
a∈A

[(
µ̃ti(a)− µt(a)

)T
[(Pa − I)v∗ + ra]

]
13

Wang, Mengdi. ”Randomized linear programming solves the Markov decision problem in nearly linear (sometimes sublinear) time.”
Mathematics of Operations Research 45.2 (2020): 517-546.Alec Koppel Invited Talk Date 13 / 20
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n

n∑
i=1

DKL(µ∗‖µti) +
1
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We prove the decrement lemma for Et as

E [Et+1 | Ft] ≤Et − β

[
λ∗ +

∑
a∈A

[
µt(a)T [(I − Pa)v∗ + ra]

]]
+ β2Õ
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+
β

n
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Step 2: Bound the Duality Gap

Duality Gap:

Theorem

For µt = 1
n

∑n
i=1 µ

t
i, after T number of iterations, with the step size selection

β = Õ
(√

E0

n|S|1.5|A|t2mixD(Γ,ρ)T

)
, it holds that

1

T

T−1∑
t=0

E

[∑
a∈A

[
[v∗ − Pav∗ + ra]Tµt(a)

]]
+ λ∗

≤ Õ

(
tmix

√
nE0|S|1.5|A|D(Γ, ρ)

T

)

⇒ n is the number of agents

⇒ D(Γ, ρ) :=
[

1+Γ
1−ρ

]
where Γ=

(
1− w

4n2

)−2
and ρ=

(
1− w

4n2

)1/B
⇒ B is the strong-connectivity parameter
⇒ w is the lower bound on weights wij for j ∈ Ni
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Step 3: From Duality Gap to Primal Average Reward

Average reward result:

Lemma

By selecting T = Ω
(
τ2t2mix

nE0|S|1.5|A|D(Γ,ρ)
ε2

)
, the proposed algorithm output

a policy π̂= 1
T

∑T
t=1 π

t such that λ∗ − ε ≤ λπ̂ with probability 2/3. Hence,
the algorithm outputs an ε optimal policy with probability 2/3.

Sample Complexity Result:

Theorem

Under some regularity conditions, the proposed algorithm draws

T = Ω

(
τ2t2mix

nE0|S|1.5|A|D(Γ, ρ)

ε2
log

1

δ

)
state transitions to output an approximate policy π̃ such that λπ̃ ≥ λ∗ − ε
with probability log

(
1
δ

)
at least.

Alec Koppel Invited Talk Date 16 / 20



Meta-RMAPD Algorithm

Input:ε > 0, S, A, t∗mix, τ

Run the RMAPD for K number of iterations with precision ε
3 and denote

the output as π(1), π(2), · · · , π(K).

For each output policy π(k), conduct the approximate value evaluation for

L time steps and obtain Y
(k)

which is approximate value evaluation with
precision level ε/3 and probability δ

2K .

Output π̃ = π(k∗) such that k∗ = argmaxk Y
(k)

.
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Experiments: Multi-Agent

Setup details:

⇒ 4 agents, Cooperative navigation

⇒ Goal is to reach destination safely without colliding

⇒ We run on different graphs, Fully connected, ring, and random

(a) 2 agent analog env. (b) Average return (c) Consensus error

→ Main takeaway:

⇒ Proposed Algorithm works well across variety of network topologies

Alec Koppel Invited Talk Date 18 / 20



Conclusions

We consider the multi-agent RL problem with full observability

Developed the first fully decentralized algorithm to solve the problem

First PAC type guarantees for MARL in average reward case

Future Directions:

Extensive simulation results for the proposed techniques

Consider the state space approximation for scalability

Develop the communication efficient version
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Thanks
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