Collaborative Beamforming for Agents with Localization Errors

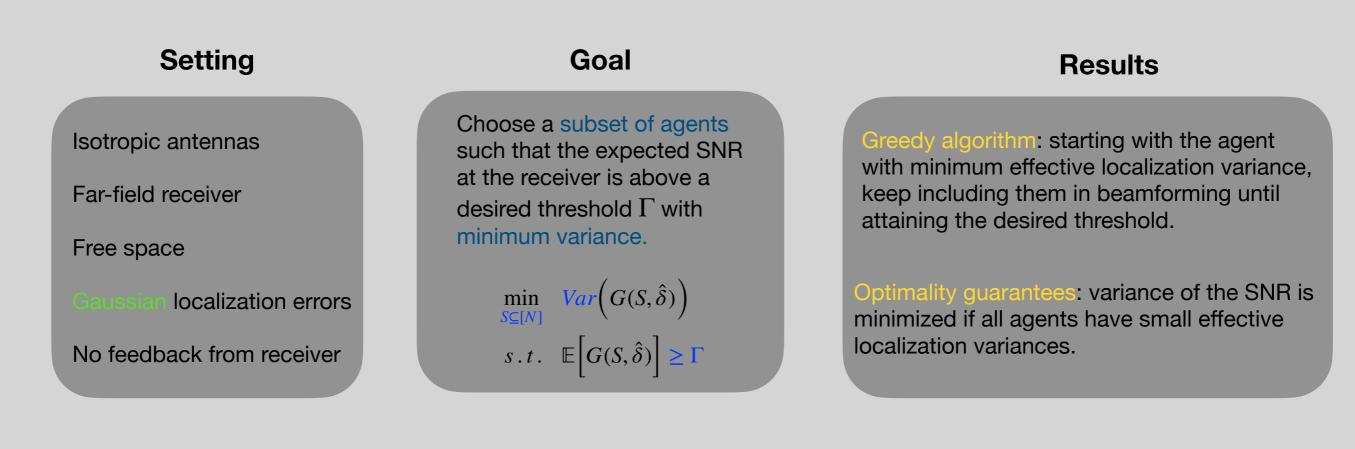
Authors: Erfaun Noorani, Yagiz Savas, Alec Koppel, John Baras, Ufuk Topcu, and Brian M. Sadler

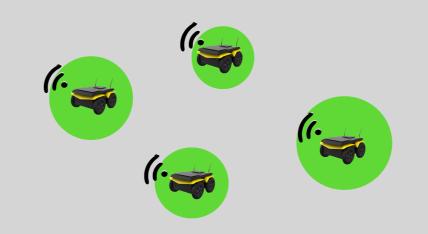
Presenter: Yagiz Savas

2021 Asilomar Conference on Signals, Systems, and Computers

Paper ID: 1146

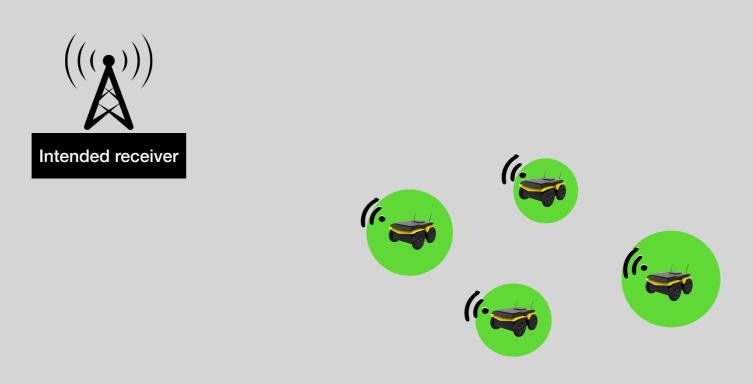
A summary of the paper





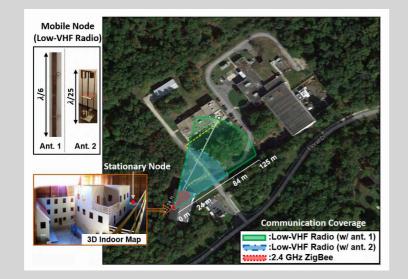
Overview

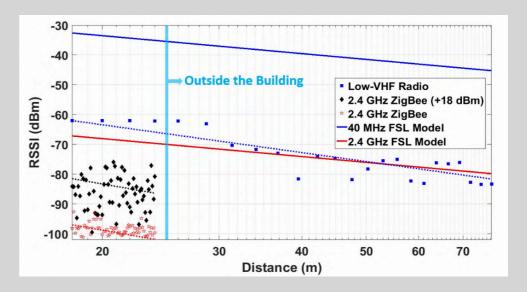
- Assumptions
- Transmission model
- Related work
- A risk-sensitive discrete optimization problem
- A greedy approach for small localization errors
- Extensions for arbitrary localization errors



Assumptions on the communication system

- The base station (BS) is located in the known far-field direction.
- The signal propagates in free space. (~40 MHz)
- The agents' are frequency- and time-synchronized. (short-range radio protocol)
- No mutual coupling between the agents' antennas. (large inter-agent distances)
- The communication takes place over a narrowband wireless channel $h_i = a_i e^{j\eta_i}$.
- All channels attenuate the signal at the same level, i.e., $a_i = a_i$. (similar agent-BS distances)

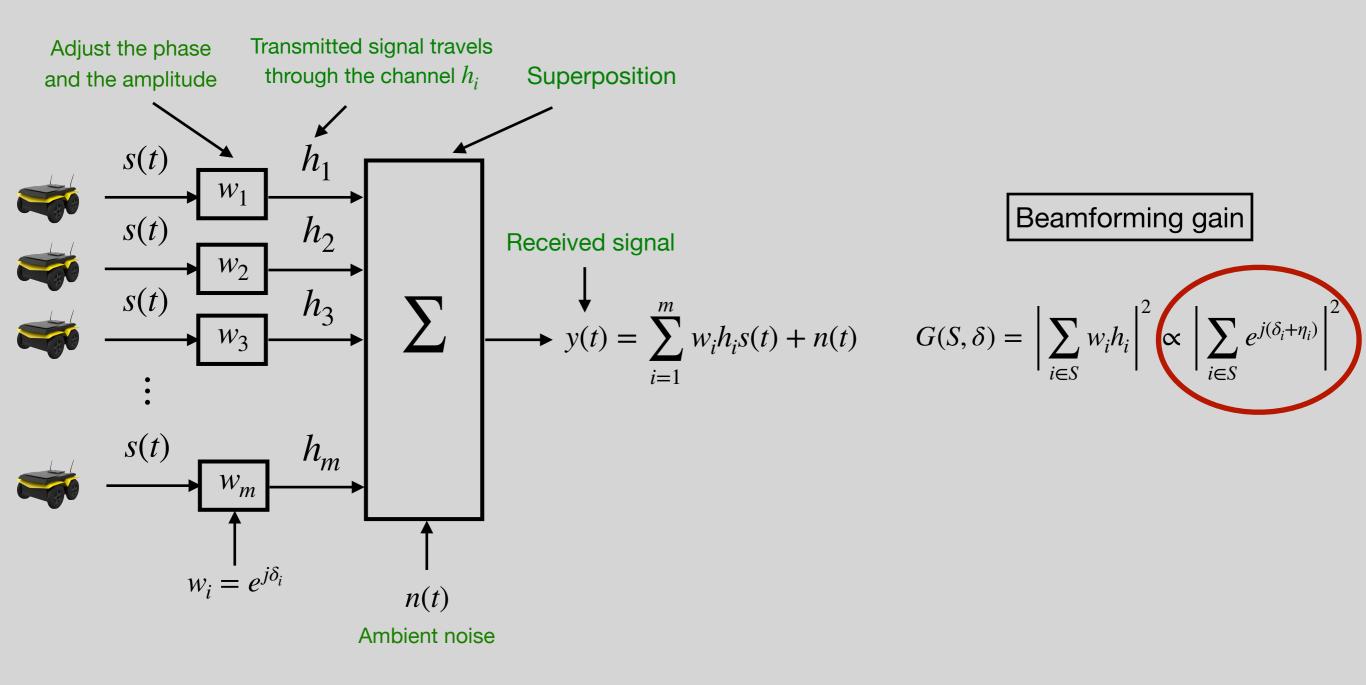




Choi et al., "Low-Power Low-VHF ad-hoc networking in complex environments", IEEE Access, 2017.

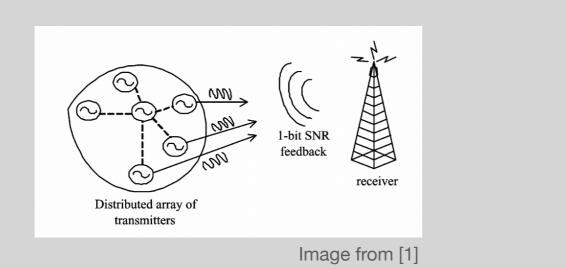
Dagefu et al., "Short-range low-VHF channel characterization in cluttered environments", IEEE Transactions on Antennas and Propagation, 2015.

Transmission model



Related work

• Feedback-based approaches [1]



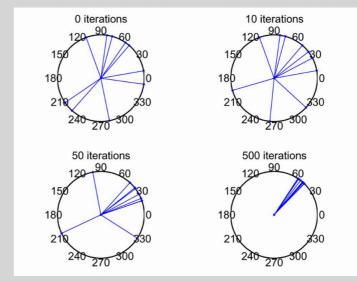
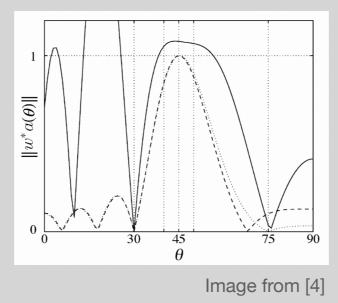


Image from [1]

• Convex optimization-based approaches [2,3,4]



[1] Mudumbai et al., "Distributed transmit beamforming using feedback control", IEEE Transactions on Information Theory, 2010.

- [2] Wang et al., "Outage Constrained Robust Transmit Optimization for Multiuser MISO Downlinks: Tractable Approximations by Conic Optimization", IEEE Transactions on Signal Processing, 2014.
- [3] Gershman et al., "Convex optimization-based beamforming", IEEE Signal Processing Magazine, 2010.
- [4] Lorenz et al., "Robust minimum variance beamforming", IEEE Transactions on Signal Processing, 2005.

How to optimize the beamforming gain

$$G(S,\delta) = \left|\sum_{i\in S} e^{j(\delta_i + \eta_i)}\right|^2$$

$$\eta_{i} = -\frac{2\pi f_{c}}{C} \langle \vec{r}_{i}, \vec{r}_{BS} \rangle$$
Local position of the agent $i \in [N]$

• If we knew the local position \vec{r}_i for each $i \in [N]$, then

$$(S^{\star}, \delta^{\star}) \in \arg \max_{(S,\delta)} \left| \sum_{i \in S} e^{j(\delta_i + \eta_i)} \right| \quad \iff \quad S^{\star} = [N] \text{ and } \delta_i^{\star} = -\eta_i \text{ for each } i \in [N]$$

Include all the agents in beamforming and align their phases

The question that we want to answer:

How to optimize $G(S, \delta)$ if we know the distribution of \vec{r}_i ?

We will assume that

$$\vec{r}_i \sim N(\mu_i, \Sigma_i)$$

A risk-sensitive optimization problem

- Since the agents' locations $r_i \sim N(\mu_i, \Sigma_i)$, the beamforming gain is a random variable!
- If we just want to maximize the expected beamforming gain, then

$$(\hat{S}, \hat{\delta}) \in \arg \max_{(S, \delta)} \mathbb{E}[G(S, \delta)] \iff \hat{S} = [N] \text{ and } \hat{\delta}_i = -\mathbb{E}[\eta_i] \text{ for each } i \in [N]$$

Include all the agents in beamforming and align their phases in expectation

• We will fix the agent's phases by choosing $\delta_i = \hat{\delta}_i$, and focus on a risk-sensitive formulation

$$\min_{S \subseteq [N]} \quad Var\Big(G(S,\hat{\delta})\Big)$$
$$s.t. \quad \mathbb{E}\Big[G(S,\hat{\delta})\Big] \ge \Gamma$$

Intuitively, we want to choose a subset of agents that will form a reliable communication link with high probability

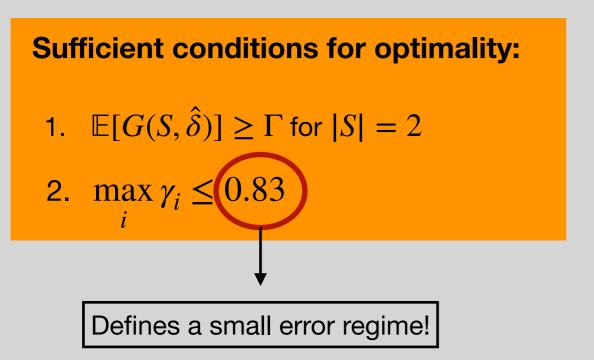
A greedy algorithm and its optimality guarantees

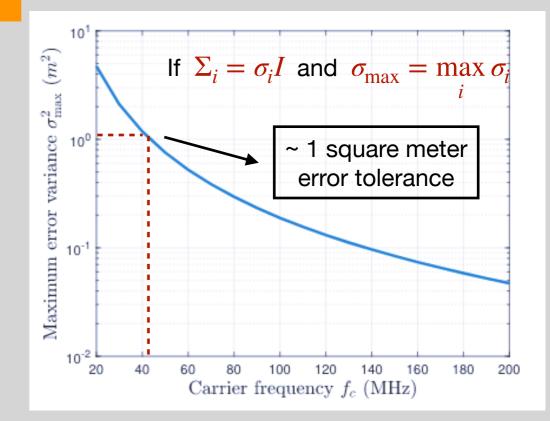
Let $\Phi_i = \hat{\delta}_i + \eta_i$ be the total phase. Then, we have $G(S, \hat{\delta}) = \sum_{i \in S} \sum_{j \in S} cos(\Phi_i - \Phi_j)$.

Recall that $\eta_i = -\frac{2\pi f_c}{C} \langle \vec{r}_i, \vec{r}_{BS} \rangle$ and $\vec{r}_i \sim N(\mu_i, \Sigma_i)$. Then, we have $\Phi_i \sim N(0, \gamma_i)$.

Greedy algorithm:

- 1. Sort the effective variances γ_i in increasing order
- 2. Add the agents in beamforming until $\mathbb{E}[G(S, \hat{\delta})] \geq \Gamma$





Extensions to arbitrary localization errors

Recall that we aim to solve:

$$\min_{S \subseteq [N]} \quad Var\Big(G(S,\hat{\delta})\Big)$$
$$s.t. \quad \mathbb{E}\Big[G(S,\hat{\delta})\Big] \ge \Gamma$$

We showed that both $Var(G(S, \hat{\delta}))$ and $\mathbb{E}[G(S, \hat{\delta})]$ are supermodular set functions.

A difference-of-submodular formulation with local optimality guarantees [1]:

$$\lambda_{k} = \alpha \lambda_{k-1}, \qquad \alpha > 1, \ \lambda_{0} > 0$$
$$\min_{S \subseteq [N]} Var\Big(G(S, \hat{\delta})\Big) - \lambda_{k} \mathbb{E}\Big[G(S, \hat{\delta})\Big]$$

9

Comparison with a convex optimization-based beamformer

Convex relaxation of the discrete optimization problem

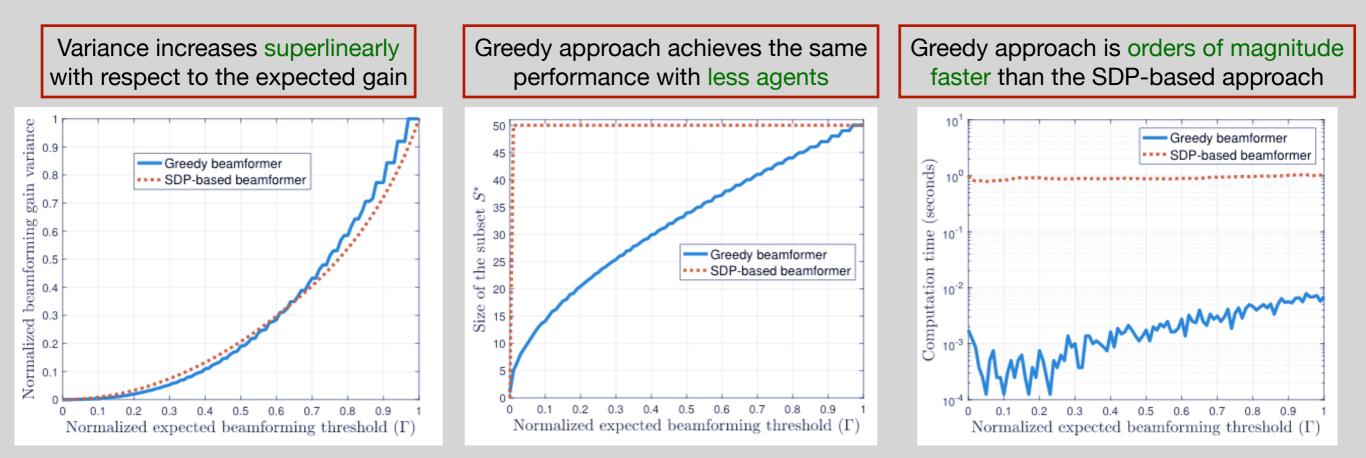
$$w^{\star} \in \arg \min_{w \in \mathbb{C}^{N}} ||w||^{2}$$

 $s \cdot t \cdot \mathbb{E}[w^{H}Hw] \ge \Gamma$
 $\forall i \in [N] ||w(i)|^{2} \le 1$

N

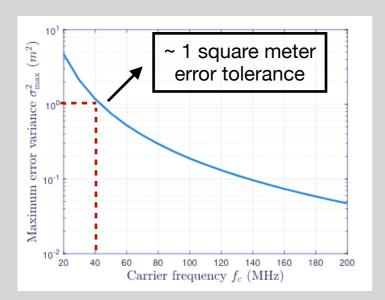
Simulation parameters

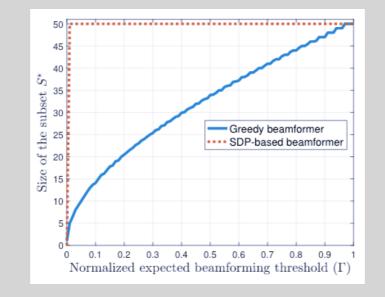
N = 50 agents $f_c = 40 \text{ MHz}$ $\max_i \gamma_i \le 0.8$ M = 100 samples

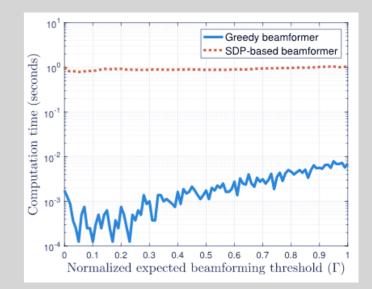


Conclusions

- Collaborative beamforming under Gaussian localization errors
- Risk-sensitive discrete optimization problem
 - To ensure the reliability of communication using minimum number of agents
- A greedy algorithm with global optimality guarantees in the small error regime
 - Orders of magnitude faster than convex optimization-based approaches and utilizes significantly less number of agents to achieve a similar performance







Thank you for listening...

Yagiz Savas

Email: yagiz.savas@utexas.edu