Projected Pseudo-Mirror Descent in Reproducing Kernel Hilbert Space Abhishek Chakraborty*, Ketan Rajawat[§] and Alec Koppel^{†→‡} * NetApp India [§] Dept. of EE, IIT Kanpur [†] CISD, U.S. Army Research Laboratory [‡] Supply Chain Optimization Technologies, Amazon Asilomar Conference on Signals, Systems, and Computers Oct. 31th - Nov 3rd, 2021 Focus: function fitting when range is required to be non-negative - \Rightarrow samples sequentially revealed $\{\mathbf{x}_t\}_{t\in\mathbb{N}},\,\mathbf{x}_t\in\mathcal{X}\subset\mathbb{R}^d$ - ⇒ Applicable to both supervised/unsupervised learning - \Rightarrow Focus: feasible set \Rightarrow RKHS \Rightarrow nonlinear interpolation - ightarrow Mathematically: fit predictive model $f \in \mathcal{H}_+ \subset \mathcal{H}$ (\mathcal{H} is RKHS) - \Rightarrow Expected risk $R(f) := \mathbb{E}[\ell(f(\mathbf{x}))], \ell$ negative log-likelihood - → Goal: Find optimal non-negative function in RKHS $$f^* = \underset{f \in \mathcal{H}_+}{\operatorname{argmin}} R(f)$$ \Rightarrow Poisson process: $R(f) = \mathbb{E}\left[-\log(f(\mathbf{x}))\right] + \int_{\mathcal{X}} f(\mathbf{x}) d\mathbf{x}$ # Technological Context ### Inhomogeneous Poisson Point Process (PPP) arise in: - ⇒ Networking: Queuing theory - ⇒ Communication: Base station placements - ⇒ Crime: Determining crime density of a location - → Other instances where non-negativity is important: - ⇒ trajectory optimization - ⇒ probabilistic supervised learning (logistic regression) - → We focus on PPP intensity estimation ¹ https://packetpushers.net/average-network-delay Azar Taufique, Mona Jaber, Ali Imran, Zaher Dawy, and Elias Yacoub, "Planning wireless cellular networks of future: Outlook, challenges and opportunities," IEEE Access 5, pp. 4821-4845, 2017. ³Y. Lee, O. SooHyun and J.E. Eck, "A Theory-driven algorithm for real-time crime hot spot forecasting," Police Quarterly, 23(2), pp.174-201, 2020. # Related Works # POLK ⁴ cannot preserve function positivity. - \rightarrow Online PMD ⁵ \Rightarrow learns fixed-subspace/grid approx - → No concept of data adaptive dictionary - → Offline BFGS⁶ is not time/memory efficient - → Offline Quadratic Program solver ⁷ - → Points of contrast for this work: - \Rightarrow learn data-driven representation \Rightarrow subspace projections - ⇒ theoretically trades off memory/accuracy - ⇒ beats state of the art offline and online solvers ⁴ A. Koppel, G. Warnell, E. Stump, and A. Ribeiro, "Parsimonious online learning with kernels via sparse projections in function space," Journal of Machine Learning Research, vol. 20, no. 1, pp. 83–126, 2019 ⁵Y. Yang, H. Wang, N. Kiyavash, and N. He, "Learning positive functions with pseudo mirror descent," in Advances in Neural Information Processing Systems, 2019, pp. 14 144–14 154. ⁶S. Flaxman, Y.W. Teh, D. Sejdinovic et al., "Poisson intensity estimation with reproducing kernels," Electronic Journal of Statistics, vol. 11, no. 2, pp. 5081–5104, 2017. ⁷ U. Marteau-Ferey, F. Bach, and A. Rudi, "Non-parametric models for non-negative functions," in Neural Information Processing Systems, 2020. ### Properties of Reproducing Kernel Hilbert Space (RKHS): $$\Rightarrow$$ (i) $\mathcal{H} := \overline{\text{span}(\kappa(\mathbf{x},\cdot))}$; and (ii) $\langle f, \kappa(\mathbf{x},\cdot) \rangle_{\mathcal{H}} = f(\mathbf{x})$ # Representer Theorem for RKHS: $\hat{f}_N(\cdot) = \sum_{m=1}^N w_m \kappa(\mathbf{x}_m, \cdot)$ - $\Rightarrow \kappa(\mathbf{x}_m, \cdot)$ is the kernel - \Rightarrow empirical loss minimizer $\hat{f}_N = \arg\min_{f \in \mathcal{H}} \frac{1}{N} \sum_{m=1}^{N} r_m(f)$ - ightarrow amounts to search over \mathbb{R}^N - \Rightarrow Define Gram matrix $\mathbf{K}_{\mathcal{DD}} \in \mathbb{R}^{N \times N}$ with $\{\kappa(\mathbf{x}_m, \mathbf{x}_n)\}_{m,n}$ - ightarrow As $N ightarrow \infty$, $|\mathcal{D}| ightarrow \infty$, known as curse of kernelization - → Need memory affordable compression - ⇒ e.g. KOMP⁸ Nyström sampling⁹, random feature approx. ¹⁰ - ⇒ we adopt KOMP due trade off of memory/gradient bias ⁸A. Koppel, G. Warnell, E. Stump, and A. Ribeiro, "Parsimonious online learning with kernels via sparse projections in function space," Journal of Machine Learning Research, vol. 20, no. 1, pp. 83–126, 2019 ⁹ Williams, C., & Seger, M. (2001). Using the Nyström method to speed up kernel machines. In Proceedings of the 14th annual conference on neural information processing systems (No. CONF, pp. 682-688). ¹⁰Rahimi, A., & Recht, B. (2007, December). Random Features for Large-Scale Kernel Machines. In NIPS (Vol. 3, No. 4, p. 5). Dai, B., Xie, B., He, N., Liang, Y., Raj, A., Balcan, M. F. F., & Song, L. (2014). Scalable Kernel Methods via Doubly Stochastic Gradients. Advances in Neural Information Processing Systems. 27, 3041-3049. # Non-Negativity ⇒ Mirror Descent Want to *preserve positivity* of function estimate's range? - ⇒ Mirror descent in RKHS with Bregman divergence - \Rightarrow Kullback-Lieber $B_{\psi}(f, \tilde{f}) = \langle f, \log(f/\tilde{f}) \rangle_{\mathcal{H}}$ ### Functional Bregman Divergence¹¹: $$B_{\psi}(f,\tilde{f}) := \psi(f) - \psi(\tilde{f}) - \langle \nabla \psi(\tilde{f}), f - \tilde{f} \rangle_{\mathcal{H}}$$ - $\Rightarrow \psi: \mathcal{H} \to \mathbb{R}$ is proper, closed, smooth, and strongly convex - \Rightarrow Frenchel conjugate of ψ is $\psi^* : \mathcal{H}^* \to \mathbb{R}$ and $\nabla \psi^* = (\nabla \psi)^{-1} \to \mathcal{H}^*$ is the Frenchel dual space of \mathcal{H} - \Rightarrow Define dual (auxiliary) variable $z \in \mathcal{H}^*$ as $z = \nabla \psi(f)$ - $o f(\mathbf{x}) = \nabla \psi^*(z(\mathbf{x}))$ - \rightarrow For KL-divergence $z = \log(f)$ and $f(\mathbf{x}) = \exp(z(\mathbf{x}))$ - → Exponential transformation preserves positivity ¹¹B. A. Frigyik, S. Srivastava, and M. R. Gupta, "Functional bregman divergence and bayesian estimation of distributions," IEEE Transactions on Information Theory, vol. 54, no. 11, pp. 5130–5139, 2008. # Mirror Descent in RKHS ### **Optimization problem** in dual/mirror space (mirror descent in \mathcal{H}) $$f_{t+1} = \arg\min_{f \in \mathcal{H}} \left(\langle g_t, f \rangle_{\mathcal{H}} + \frac{1}{\eta} B_{\psi}(f, f_t) \right)$$ \rightarrow Via auxiliary variable/mirror map $f_{t+1}(\mathbf{x}) = \nabla \psi^*(z_{t+1}(\mathbf{x}))$ $$f_{t+1} = f_t \exp(-\eta g_t)$$ for KL divergence → This update is not directly implementable in parameter space # Mirror Descent in RKHS ### **Optimization problem** in dual/mirror space (mirror descent in \mathcal{H}) $$f_{t+1} = \arg\min_{f \in \mathcal{H}} \left(\langle g_t, f \rangle_{\mathcal{H}} + \frac{1}{\eta} B_{\psi}(f, f_t) \right)$$ \rightarrow Via auxiliary variable/mirror map $f_{t+1}(\mathbf{x}) = \nabla \psi^*(z_{t+1}(\mathbf{x}))$ $$f_{t+1} = f_t \exp(-\eta g_t)$$ for KL divergence - → This update is not directly implementable in parameter space - \rightarrow Aux. var. $z_t = \nabla \psi(f_t) = \log(f_t) \in \mathcal{H}$ yields $z_{t+1} = z_t \eta g_t$ - \Rightarrow Pseudo-grad $g_t = g_t' \kappa(\mathbf{x}_t, \cdot) \Rightarrow$ growing basis $z_t = \sum_u w_u g_u'$ - \Rightarrow via samples $\mathbf{X}_t = [\mathbf{x}_1; \cdots; \mathbf{x}_{t-1}]$, weights \mathbf{w}_t via RKHS # Mirror Descent in RKHS ### **Optimization problem** in dual/mirror space (mirror descent in \mathcal{H}) $$f_{t+1} = \arg\min_{f \in \mathcal{H}} \left(\langle g_t, f \rangle_{\mathcal{H}} + \frac{1}{\eta} B_{\psi}(f, f_t) \right)$$ ightarrow Via auxiliary variable/mirror map $f_{t+1}(\mathbf{x}) = \nabla \psi^*(z_{t+1}(\mathbf{x}))$ $$f_{t+1} = f_t \exp(-\eta g_t)$$ for KL divergence - → This update is not directly implementable in parameter space - ightarrow Aux. var. $z_t = \nabla \psi(f_t) = \log(f_t) \in \mathcal{H}$ yields $z_{t+1} = z_t \eta g_t$ - \Rightarrow Pseudo-grad $g_t = g_t' \kappa(\mathbf{x}_t, \cdot) \Rightarrow$ growing basis $z_t = \sum_u w_u g_u'$ - \Rightarrow via samples $\mathbf{X}_t = [\mathbf{x}_1; \cdots; \mathbf{x}_{t-1}]$, weights \mathbf{w}_t via RKHS - \rightarrow Employ KOMP fixed budget ϵ on $z_t \sim (\mathbf{X}_t, \mathbf{w_t})$ - \Rightarrow defines a subspace projection in \mathcal{H}^* for z_t # Dictionary Compression via KOMP $$\begin{split} \tilde{\mathcal{D}}_{t+1}, \, \tilde{\mathbf{w}}_{t+1} &\Rightarrow z_{t+1} \text{ params. w/o proj.} \\ &\rightarrow \{\mathcal{D}_{t+1}, \mathbf{w}_{t+1}\} = \mathsf{KOMP}(\tilde{\mathcal{D}}_{t+1}, \tilde{\mathbf{w}}_{t+1}, \epsilon) \\ &\Rightarrow \mathsf{params} \; \mathcal{D}_{t+1}, \, \mathbf{w}_{t+1} \; \mathsf{after projection} \end{split}$$ # Pseudo-gradients Stochastic grad. for PPP has integral \Rightarrow needs approximation \Rightarrow **Pseudo-gradients** \Rightarrow direction correlated w/ true grad ¹² $$\langle \nabla R(f_t), \mathbb{E}[g_t|\mathcal{F}_t] \rangle \geq 0$$ - ⇒ e.g., Stochastic grad, Kernel embeddings, Gradient sign - ightarrow Generic pseudo-gradient expression: $g=g'\kappa(\mathbf{x},\cdot)$ - \Rightarrow Stochastic case: $g' = \ell'(f_t(\mathbf{x})) = \ell'(\nabla \psi^*(z(\mathbf{x})))$ - \rightarrow Kernel embedding $g_t = \langle \kappa(\mathbf{x}_t, \cdot), \nabla R(f_t) \rangle$ - ⇒ smoothing to approximate integral in Poisson process ¹²B. Poljak and Y. Z. Tsypkin, "Pseudogradient adaptation and training algorithms," Automation and Remote Control, vol. 34, pp. 45–67, 1973 # Sparse Representations of Positive # Functions via Projected Pseudo-Mirror Descent ``` Require: kernel \kappa, step-size \eta, compression parameter \epsilon ``` **Initialize** Arbitrary small z_0 for t = 1, 2, ... do Read: data x+ **Evaluate:** Pseudo Gradient $g_t = g_t' \kappa(x_t, \cdot)$ **Update:** $\tilde{z}_{t+1} = z_t - \eta g_t$ **Update Dictionary:** $\mathcal{D}_{t+1} = \mathcal{D}_t \cup \{\mathbf{x}_t\}$ Update weights: $$[\mathbf{w}_{t+1}]_n = \begin{cases} [\mathbf{w}_t]_n & \mathbf{x}_n \in \mathcal{D}_t \\ -\eta \mathbf{g}_t' & \mathbf{x}_n = \mathbf{x}_t \end{cases}$$ Compress: $\{\mathcal{D}_{t+1}, \mathbf{w}_{t+1}\} = \mathsf{KOMP}(\tilde{\mathcal{D}}_{t+1}, \tilde{\mathbf{w}}_{t+1}, \epsilon)$ Broadcast: Z_{t+1} end for Evaluation of actual function $f_{t+1}(\mathbf{x}) = \nabla \psi^*(\mathbf{w}_{t+1}^\top \mathbf{k}_{\mathcal{D}_{t+1}}(\mathbf{x}))$ ### **Technical Conditions** Assumption 1 g_t satisfies pseudo-gradient inequality: $$\langle \nabla R(f_t), \mathbb{E}[g_t|\mathcal{F}_t] \rangle \geq 0$$. and its expectation bounded below by 2nd-moment of dual norm: $$\mathbb{E}[\langle \nabla R(f_t), \mathbb{E}[g_t|\mathcal{F}_t] \rangle] \geq D\mathbb{E}[||\nabla R(f_t)||_*^2]$$ Assumption 2 The optimizer of R(f) is finite and satisfies the Polyak-Łojasiewicz (P-Ł) condition $$\|\nabla R(f)\|_*^2 \geq 2\lambda [R(f) - R(f^*)],$$ Assumption 3 The function $R_{\psi}(\cdot)$ which takes as inputs the dual functions $z = \nabla \psi(f)$ is L_1 -smooth. Assumption 4 Pseudo-gradient q_t satisfies variance growth condition $$\mathbb{E}[\|g_t\|_*^2] \leq b^2 + c^2 \mathbb{E}[\langle \nabla R(f_t), \mathbb{E}[g_t|\mathcal{F}_t] \rangle],$$ # SPPPOT Convergence #### Theorem For constant step-size $\eta < \min(\frac{1}{q_1}, \frac{q_1}{q_2})$ and compression $\epsilon = \alpha \eta$, the risk sub-optimality attenuates linearly up to a bounded neighborhood $$\mathbb{E}[R(f_{t+1}) - R(f^*)] \le (1 - \rho)^t \mathbb{E}[R(f_0) - R(f^*)] + \frac{1}{\rho} \left[L_1 \eta^2 b^2 + \left(\frac{\eta \omega_1}{2} + L_1 \eta^2 \right) \alpha^2 \right],$$ where $\rho = q_1 \eta - q_2 \eta^2$, with constants $q_1 = 2\lambda \left(D - \frac{1}{2\omega_1}\right)$ and $q_2 = 2\lambda DL_1 c^2$. # SPPPOT Complexity Assumption 5 Pseudo-gradient admits the form $g_t = g_t' \kappa(\mathbf{x}_t, \cdot)$ with $$|g_t'| \leq C$$. Assumption 6 The feature space \mathcal{X} is compact. ### Corollary Denote as M_t the model order, or number of elements \mathbf{x}_t in the dictionary associated with dual function z_t at time t. Then, we have that $M_t \leq M^{\infty}$, where M^{∞} is the maximum model order possible. Moreover, M^{∞} satisfies $$M^{\infty} \leq \mathcal{O}\left(\frac{1}{\epsilon}\right)^d$$ ### Experimental setup ### Poisson process intensity of NBA dataset of Stephen Curry - → Contains shot distances from basket as data $x \in \mathbb{R}$ - \rightarrow Compared SPPPOT with offline BFGS¹³ and online PMD¹⁴ #### Performance merits: - ⇒ Test Loss between SPPPOT and BFGS - ightarrow PMD loss cannot be calculated for real world data - ⇒ Learnt "normalized intensity" aka pdf for all - ⇒ Computational time and complexity ¹³ S. Flaxman, Y.W. Teh, D. Sejdinovic et al., "Poisson intensity estimation with reproducing kernels," Electronic Journal of Statistics, vol. 11, no. 2, pp. 5081–5104, 2017. ¹⁴ Y. Yang, H. Wang, N. Kiyavash, and N. He, "Learning positive functions with pseudo mirror descent," in Advances in Neural Information Processing Systems, 2019, pp. 14 144–14 154. # Simulation results ### SPPPOT beats the state of the art - ⇒ Offline BFGS has high computational time/complexity - ⇒ PMD employs fixed grid points, cannot extrapolate - ⇒ SPPPOT has comparable complexity as PMD - → superior performance - ⇒ SPPPOT ⇒ guarantees w/ compressed dictionary - ⇒ PMD does not characterize error of fixed subspace approx. - → additional experiments, Quasi-Newton variant in the journal # References - ⇒ A. Chakraborty, K. Rajawat, and A. Koppel, "Projected Pseudo-Mirror Descent in Reproducing Kernel Hilbert Space," in, Asilomar Conference on Signals, Systems and Computers. IEEE, 2021. - → A. Chakraborty, K. Rajawat, and A. Koppel, "Sparse representations of positive functions via projected pseudo-mirror descent," arXiv preprint arXiv:2011.07142, 2020.