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Introduction E,'EV,_-DM

I

Focus: function fitting when range is required to be non-negative
= samples sequentially revealed {X;}scn, X; € X C R?
= Applicable to both supervised/unsupervised learning
= Focus: feasible set = RKHS =- nonlinear interpolation
— Mathematically: fit predictive model f € H, C H (H is RKHS)
= Expected risk R(f) := E[¢(f(x))], ¢ negative log-likelihood
— Goal: Find optimal non-negative function in RKHS

f* = argmin R(f)
feEH

= Poisson process: R(f)=E [ log(f(x))]+ [, f(x)dXx
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Technological Context E,'_:V,_-DM

)
Inhomogeneous Poisson Point Process (PPP) arise in:

= Networking: Queuing theory

= Communication: Base station placements

= Crime: Determining crime density of a location
— Other instances where non-negativity is important:

= trajectory optimization

= probabilistic supervised learning (logistic regression)
— We focus on PPP intensity estimation

Qg Ssen

1 https:/packetpushers.net/average-network-delay

Azar Taufique, Mona Jaber, Ali Imran, Zaher Dawy, and Elias Yacoub, “Planning wireless cellular networks of future: Outlook,
challenges and opportunities,” IEEE Access 5, pp. 4821-4845, 2017.

Y. Lee, O. SooHyun and J.E. Eck, “A Theory-driven algorithm for real-time crime hot spot forecasting,” Police Quarterly, 23(2),
pp.174-201, 2020.
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Related Works E:'sw:am

I

POLK “ cannot preserve function positivity.

— Online PMD % = learns fixed-subspace/grid approx
— No concept of data adaptive dictionary

— Offline BFGS® is not time/memory efficient
— Offline Quadratic Program solver ’

— Points of contrast for this work:
= learn data-driven representation = subspace projections
= theoretically trades off memory/accuracy
= beats state of the art offline and online solvers

4A. Koppel, G. Warnell, E. Stump, and A. Ribeiro, “Parsimonious online learning with kernels via sparse projections in function space,”
Journal of Machine Learning Research, vol. 20, no. 1, pp. 83-126, 2019

Y. Yang, H. Wang, N. Kiyavash, and N. He, “Learning positive functions with pseudo mirror descent,” in Advances in Neural
Information Processing Systems, 2019, pp. 14 144-14 154,

68. Flaxman, Y.W. Teh, D. Sejdinovic et al., “Poisson intensity estimation with reproducing kernels,” Electronic Journal of Statistics, vol.
11, no. 2, pp. 5081-5104, 2017.

U. Marteau-Ferey, F. Bach, and A. Rudi, “Non-parametric models for non-negative functions,” in Neural Information Processing
Systems, 2020.
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. RKHS Representations E,'_:V,_-DM

Properties of Reproducing Kernel Hilbert Space (RKHS):
= (i) H = span(x(x. )); and (ii) (f, r(X, )3 = F(X)
Representer Theorem for RKHS: fy(-) = SN wimr(Xm, -)
= k(Xpm, -) is the kernel
— empirical loss minimizer fy = arg minscy 1N 2%21 rm(f)
— amounts to search over RN
= Define Gram matrix Kpp € RV*N with {x(Xm, Xn)}m.n

— As N — o0, |D| — oo, known as curse of kernelization
— Need memory affordable compression

= e.g. KOMP?® Nystrom sampling®, random feature approx. '°
= we adopt KOMP due trade off of memory/gradient bias

A. Koppel, G. Warnell, E. Stump, and A. Ribeiro, “Parsimonious online learning with kernels via sparse projections in function space,”
Journal of Machine Learning Research, vol. 20, no. 1, pp. 83-126, 2019

Williams, C., & Seeger, M. (2001). Using the Nystrdm method to speed up kernel machines. In Proceedings of the 14th annual
conference on neural information processing systems (No. CONF, pp. 682-688).

Rahimi, A., & Recht, B. (2007, December). Random Features for Large-Scale Kernel Machines. In NIPS (Vol. 3, No. 4, p. 5).

Dai, B., Xie, B., He, N., Liang, Y., Raj, A., Balcan, M. F. ., & Song, L. (2014). Scalable Kernel Methods via Doubly Stochastic Gradients.
Advances in Neural Information Processing Systems, 27, 3041-3049.
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7; Non-Negativity =- Mirror Descent E,'EV,_-DM

I

Want to preserve positivity of function estimate’s range?
= Mirror descent in RKHS with Bregman divergence
= Kullback-Lieber B,(f, f) = (f,log(f/f))x

Functional Bregman Divergence'":
By (£, ) := o (f) — o(F) = (Vo(F), f — T

=1 : H — R is proper, closed, smooth, and strongly convex
= Frenchel conjugate of ¢ is ¢* : H* — R and Vy* = (V) ™!
— H* is the Frenchel dual space of H
= Define dual (auxiliary) variable z € H* as z = Vi(f)
— f(x) = V*(2(x))
— For KL-divergence z = log(f) and f(x) = exp(z(x))
— Exponential transformation preserves positivity

" B. A. Frigyik, S. Srivastava, and M. R. Gupta, “Functional bregman divergence and bayesian estimation of distributions,” IEEE

Transactions on Information Theory, vol. 54, no. 11, pp. 5130-5139, 2008.

Abhishek Chakraborty, Ketan Rajawat and Alec Koppel Sparse Representations of Positive Functions 6



7; Mirror Descent in RKHS E,'_:V,_-DM

I

Optimization problem in dual/mirror space (mirror descent in )

1
fip1 = arg m|n <<Qt, f)y + EBw(ﬂ ft)>

— Via auxiliary variable/mirror map f11(X) = Vy*(z1+1(X))
frr1 = frexp(—ng¢) for KL divergence

— This update is not directly implementable in parameter space
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7; Mirror Descent in RKHS E,'_:V,_-DM

I

Optimization problem in dual/mirror space (mirror descent in )

1
fry1 = arg m|n <<Qt, ) + EBw(ﬂ f1)>

— Via auxiliary variable/mirror map f11(X) = Vy*(z1+1(X))
frr1 = frexp(—ng¢) for KL divergence

— This update is not directly implementable in parameter space
— Aux. var. z; = Vy(f;) = log(f;) € H yields z11 = z: — ng:
= Pseudo-grad g; = g;x(X;,-) = growing basis z; = >, w.g,
= via samples X; = [Xy;-- - ; X¢_1], weights w; via RKHS
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7; Mirror Descent in RKHS E,'_:V,_-DM

I

Optimization problem in dual/mirror space (mirror descent in )

1
fry1 = arg m|n <<Qt, ) + EBw(ﬂ ft)>

— Via auxiliary variable/mirror map f11(X) = Vy*(z1+1(X))
frr1 = frexp(—ng¢) for KL divergence

— This update is not directly implementable in parameter space
— Aux. var. z; = Vy(f;) = log(f;) € H yields z11 = z: — ng:
= Pseudo-grad g; = g;x(X;,-) = growing basis z; = >, w.g,
= via samples X; = [Xy;-- - ; X¢_1], weights w; via RKHS
— Employ KOMP fixed budget € on z; ~ (X;, Wy)
= defines a subspace projection in #* for z;
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| 7ZAN . . . .
(z‘ Dictionary Compression via KOMP CDEV,__UM
(us amnv )}
Drit, Wit = 2y params. w/o proj.
— {Dt11, W11} = KOMP(Dyp 1, Wi i1, €)
= params Dy, 1, W1 after projection
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7; Pseudo-gradients E:'sw:am

I

Stochastic grad. for PPP has integral = needs approximation
= Pseudo-gradients = direction correlated w/ true grad '2

(VAR(f),E[g:|F]) = 0

= e.g., Stochastic grad, Kernel embeddings, Gradient sign
— Generic pseudo-gradient expression: g = g'x(X, -)

= Stochastic case: g’ = ¢'(f:(x)) = ¢'(Vy*(z(x)))
— Kernel embedding g: = (k(Xy, ), VR(f))

= smoothing to approximate integral in Poisson process

12B. Poljak and Y. Z. Tsypkin, “Pseudogradient adaptation and training algorithms,” Automation and Remote Control, vol. 34, pp.

45-67, 1973.
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~ @ Sparse Representations of Positive E'EVCDM

Functions via Projected Pseudo-Mirror Descent

Require: kernel x, step-size n, compression parameter e
Initialize Arbitrary small z;
fort=1,2,...do
Read: data x;
Evaluate: Pseudo Gradient g; = gjx(x:, -)
Update: Z.1 =z —ng
Update Dictionary: D;.1 = D; U {X;}
[Wt]n Xh € Dt
—ng; Xn =X
Compress: {D;.1,Wi 1} = KOMP(Dyy1, Wei1,€)
Broadcast: z; 1
end for
Evaluation of actual function £, 1(x) = V¢*(W/, ko, (X))

Update weights: [w; 1], =

Abhishek Chakraborty, Ketan Rajawat and Alec Koppel Sparse Representations of Positive Functions 12



Technical Conditions E,'_:V,_-DM

I

Assumption 1 g; satisfies pseudo-gradient inequality:
(VAR(f).E[gi|Fi]) > 0 .
and its expectation bounded below by 2nd-moment of dual norm:
E[(VR(f), Elgi|Fi])] = DE[|[VA(#)I17]

Assumption 2 The optimizer of R(f) is finite and satisfies the
Polyak-tojasiewicz (P-t) condition

IVR(NZ = 2X[R(f) - R(f)] ,
Assumption 3 The function R, (-) which takes as inputs the dual
functions z = Vi (f) is Ly-smooth.

Assumption 4 Pseudo-gradient g; satisfies variance growth condition

Elllgil|?] < b2+ PE[VR(%), Elgi| F)] .
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. SPPPOT Convergence E,'EV,_-DM

Theorem
For constant step-size 1 < min( - T o 9) and compression ¢ = an, the
risk sub-optimality attenuates linearly up to a bounded neighborhood

E[R(frr1) — R(f)] < (1 — p)'E[R(f) — R(f*)]
+ % [Lm2b2 + (% + L1772) aﬂ ,

where p = qyn — Qon)?, with constants gy = 2\ (D — —) and
Qe = 2>\DL1 Cz.
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. SPPPOT Complexity E,'EV,_-DM

Assumption 5 Pseudo-gradient admits the form g; = gjx(X;, -) with
lgil < C.

Assumption 6 The feature space X is compact.

Corollary
Denote as M; the model order, or number of elements X; in the
dictionary associated with dual function z; at time t. Then, we have
that M; < M=, where M is the maximum model order possible.
Moreover, M> satisfies
e
w0 ()

Abhishek Chakraborty, Ketan Rajawat and Alec Koppel Sparse Representations of Positive Functions 15



7; Experimental setup E:'sw:am

I

Poisson process intensity of NBA dataset of Stephen Curry
— Contains shot distances from basket as data x € R
— Compared SPPPOT with offline BFGS'® and online PMD'*

Performance merits:

= Test Loss between SPPPOT and BFGS
— PMD loss cannot be calculated for real world data

= Learnt "normalized intensity” aka pdf for all
= Computational time and complexity

138. Flaxman, Y.W. Teh, D. Sejdinovic et al., “Poisson intensity estimation with reproducing kernels,” Electronic Journal of Statistics, vol.

11, no. 2, pp. 5081-5104, 2017.

Y. Yang, H. Wang, N. Kiyavash, and N. He, “Learning positive functions with pseudo mirror descent,” in Advances in Neural
Information Processing Systems, 2019, pp. 14 144—14 154,
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Simulation results {DE' vcom
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L 7ZAN .
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I

SPPPOT beats the state of the art
= Offline BFGS has high computational time/complexity
= PMD employs fixed grid points, cannot extrapolate

= SPPPOT has comparable complexity as PMD
— superior performance

= SPPPOT = guarantees w/ compressed dictionary

= PMD does not characterize error of fixed subspace approx.
— additional experiments, Quasi-Newton variant in the journal
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