

Projected Pseudo-Mirror Descent in Reproducing Kernel Hilbert Space

Abhishek Chakraborty*, Ketan Rajawat[§] and Alec Koppel^{†→‡}
* NetApp India [§] Dept. of EE, IIT Kanpur [†] CISD, U.S. Army Research Laboratory
[‡] Supply Chain Optimization Technologies, Amazon

Asilomar Conference on Signals, Systems, and Computers
Oct. 31th - Nov 3rd, 2021

Focus: function fitting when range is required to be non-negative

- \Rightarrow samples sequentially revealed $\{\mathbf{x}_t\}_{t\in\mathbb{N}},\,\mathbf{x}_t\in\mathcal{X}\subset\mathbb{R}^d$
- ⇒ Applicable to both supervised/unsupervised learning
- \Rightarrow Focus: feasible set \Rightarrow RKHS \Rightarrow nonlinear interpolation
- ightarrow Mathematically: fit predictive model $f \in \mathcal{H}_+ \subset \mathcal{H}$ (\mathcal{H} is RKHS)
 - \Rightarrow Expected risk $R(f) := \mathbb{E}[\ell(f(\mathbf{x}))], \ell$ negative log-likelihood
- → Goal: Find optimal non-negative function in RKHS

$$f^* = \underset{f \in \mathcal{H}_+}{\operatorname{argmin}} R(f)$$

 \Rightarrow Poisson process: $R(f) = \mathbb{E}\left[-\log(f(\mathbf{x}))\right] + \int_{\mathcal{X}} f(\mathbf{x}) d\mathbf{x}$

Technological Context

Inhomogeneous Poisson Point Process (PPP) arise in:

- ⇒ Networking: Queuing theory
- ⇒ Communication: Base station placements
- ⇒ Crime: Determining crime density of a location
- → Other instances where non-negativity is important:
 - ⇒ trajectory optimization
 - ⇒ probabilistic supervised learning (logistic regression)
- → We focus on PPP intensity estimation

¹ https://packetpushers.net/average-network-delay

Azar Taufique, Mona Jaber, Ali Imran, Zaher Dawy, and Elias Yacoub, "Planning wireless cellular networks of future: Outlook, challenges and opportunities," IEEE Access 5, pp. 4821-4845, 2017.

³Y. Lee, O. SooHyun and J.E. Eck, "A Theory-driven algorithm for real-time crime hot spot forecasting," Police Quarterly, 23(2), pp.174-201, 2020.

Related Works

POLK ⁴ cannot preserve function positivity.

- \rightarrow Online PMD ⁵ \Rightarrow learns fixed-subspace/grid approx
 - → No concept of data adaptive dictionary
- → Offline BFGS⁶ is not time/memory efficient
- → Offline Quadratic Program solver ⁷
- → Points of contrast for this work:
 - \Rightarrow learn data-driven representation \Rightarrow subspace projections
 - ⇒ theoretically trades off memory/accuracy
 - ⇒ beats state of the art offline and online solvers

⁴ A. Koppel, G. Warnell, E. Stump, and A. Ribeiro, "Parsimonious online learning with kernels via sparse projections in function space," Journal of Machine Learning Research, vol. 20, no. 1, pp. 83–126, 2019

⁵Y. Yang, H. Wang, N. Kiyavash, and N. He, "Learning positive functions with pseudo mirror descent," in Advances in Neural Information Processing Systems, 2019, pp. 14 144–14 154.

⁶S. Flaxman, Y.W. Teh, D. Sejdinovic et al., "Poisson intensity estimation with reproducing kernels," Electronic Journal of Statistics, vol. 11, no. 2, pp. 5081–5104, 2017.

⁷ U. Marteau-Ferey, F. Bach, and A. Rudi, "Non-parametric models for non-negative functions," in Neural Information Processing Systems, 2020.

Properties of Reproducing Kernel Hilbert Space (RKHS):

$$\Rightarrow$$
 (i) $\mathcal{H} := \overline{\text{span}(\kappa(\mathbf{x},\cdot))}$; and (ii) $\langle f, \kappa(\mathbf{x},\cdot) \rangle_{\mathcal{H}} = f(\mathbf{x})$

Representer Theorem for RKHS: $\hat{f}_N(\cdot) = \sum_{m=1}^N w_m \kappa(\mathbf{x}_m, \cdot)$

- $\Rightarrow \kappa(\mathbf{x}_m, \cdot)$ is the kernel
- \Rightarrow empirical loss minimizer $\hat{f}_N = \arg\min_{f \in \mathcal{H}} \frac{1}{N} \sum_{m=1}^{N} r_m(f)$
- ightarrow amounts to search over \mathbb{R}^N
 - \Rightarrow Define Gram matrix $\mathbf{K}_{\mathcal{DD}} \in \mathbb{R}^{N \times N}$ with $\{\kappa(\mathbf{x}_m, \mathbf{x}_n)\}_{m,n}$
- ightarrow As $N
 ightarrow \infty$, $|\mathcal{D}|
 ightarrow \infty$, known as curse of kernelization
 - → Need memory affordable compression
 - ⇒ e.g. KOMP⁸ Nyström sampling⁹, random feature approx. ¹⁰
 - ⇒ we adopt KOMP due trade off of memory/gradient bias

⁸A. Koppel, G. Warnell, E. Stump, and A. Ribeiro, "Parsimonious online learning with kernels via sparse projections in function space," Journal of Machine Learning Research, vol. 20, no. 1, pp. 83–126, 2019

⁹ Williams, C., & Seger, M. (2001). Using the Nyström method to speed up kernel machines. In Proceedings of the 14th annual conference on neural information processing systems (No. CONF, pp. 682-688).

¹⁰Rahimi, A., & Recht, B. (2007, December). Random Features for Large-Scale Kernel Machines. In NIPS (Vol. 3, No. 4, p. 5).
Dai, B., Xie, B., He, N., Liang, Y., Raj, A., Balcan, M. F. F., & Song, L. (2014). Scalable Kernel Methods via Doubly Stochastic Gradients.
Advances in Neural Information Processing Systems. 27, 3041-3049.

Non-Negativity ⇒ Mirror Descent

Want to *preserve positivity* of function estimate's range?

- ⇒ Mirror descent in RKHS with Bregman divergence
- \Rightarrow Kullback-Lieber $B_{\psi}(f, \tilde{f}) = \langle f, \log(f/\tilde{f}) \rangle_{\mathcal{H}}$

Functional Bregman Divergence¹¹:

$$B_{\psi}(f,\tilde{f}) := \psi(f) - \psi(\tilde{f}) - \langle \nabla \psi(\tilde{f}), f - \tilde{f} \rangle_{\mathcal{H}}$$

- $\Rightarrow \psi: \mathcal{H} \to \mathbb{R}$ is proper, closed, smooth, and strongly convex
- \Rightarrow Frenchel conjugate of ψ is $\psi^* : \mathcal{H}^* \to \mathbb{R}$ and $\nabla \psi^* = (\nabla \psi)^{-1} \to \mathcal{H}^*$ is the Frenchel dual space of \mathcal{H}
- \Rightarrow Define dual (auxiliary) variable $z \in \mathcal{H}^*$ as $z = \nabla \psi(f)$
 - $o f(\mathbf{x}) = \nabla \psi^*(z(\mathbf{x}))$
 - \rightarrow For KL-divergence $z = \log(f)$ and $f(\mathbf{x}) = \exp(z(\mathbf{x}))$
 - → Exponential transformation preserves positivity

¹¹B. A. Frigyik, S. Srivastava, and M. R. Gupta, "Functional bregman divergence and bayesian estimation of distributions," IEEE Transactions on Information Theory, vol. 54, no. 11, pp. 5130–5139, 2008.

Mirror Descent in RKHS

Optimization problem in dual/mirror space (mirror descent in \mathcal{H})

$$f_{t+1} = \arg\min_{f \in \mathcal{H}} \left(\langle g_t, f \rangle_{\mathcal{H}} + \frac{1}{\eta} B_{\psi}(f, f_t) \right)$$

 \rightarrow Via auxiliary variable/mirror map $f_{t+1}(\mathbf{x}) = \nabla \psi^*(z_{t+1}(\mathbf{x}))$

$$f_{t+1} = f_t \exp(-\eta g_t)$$
 for KL divergence

→ This update is not directly implementable in parameter space

Mirror Descent in RKHS

Optimization problem in dual/mirror space (mirror descent in \mathcal{H})

$$f_{t+1} = \arg\min_{f \in \mathcal{H}} \left(\langle g_t, f \rangle_{\mathcal{H}} + \frac{1}{\eta} B_{\psi}(f, f_t) \right)$$

 \rightarrow Via auxiliary variable/mirror map $f_{t+1}(\mathbf{x}) = \nabla \psi^*(z_{t+1}(\mathbf{x}))$

$$f_{t+1} = f_t \exp(-\eta g_t)$$
 for KL divergence

- → This update is not directly implementable in parameter space
- \rightarrow Aux. var. $z_t = \nabla \psi(f_t) = \log(f_t) \in \mathcal{H}$ yields $z_{t+1} = z_t \eta g_t$
 - \Rightarrow Pseudo-grad $g_t = g_t' \kappa(\mathbf{x}_t, \cdot) \Rightarrow$ growing basis $z_t = \sum_u w_u g_u'$
 - \Rightarrow via samples $\mathbf{X}_t = [\mathbf{x}_1; \cdots; \mathbf{x}_{t-1}]$, weights \mathbf{w}_t via RKHS

Mirror Descent in RKHS

Optimization problem in dual/mirror space (mirror descent in \mathcal{H})

$$f_{t+1} = \arg\min_{f \in \mathcal{H}} \left(\langle g_t, f \rangle_{\mathcal{H}} + \frac{1}{\eta} B_{\psi}(f, f_t) \right)$$

ightarrow Via auxiliary variable/mirror map $f_{t+1}(\mathbf{x}) = \nabla \psi^*(z_{t+1}(\mathbf{x}))$

$$f_{t+1} = f_t \exp(-\eta g_t)$$
 for KL divergence

- → This update is not directly implementable in parameter space
- ightarrow Aux. var. $z_t = \nabla \psi(f_t) = \log(f_t) \in \mathcal{H}$ yields $z_{t+1} = z_t \eta g_t$
 - \Rightarrow Pseudo-grad $g_t = g_t' \kappa(\mathbf{x}_t, \cdot) \Rightarrow$ growing basis $z_t = \sum_u w_u g_u'$
 - \Rightarrow via samples $\mathbf{X}_t = [\mathbf{x}_1; \cdots; \mathbf{x}_{t-1}]$, weights \mathbf{w}_t via RKHS
- \rightarrow Employ KOMP fixed budget ϵ on $z_t \sim (\mathbf{X}_t, \mathbf{w_t})$
 - \Rightarrow defines a subspace projection in \mathcal{H}^* for z_t

Dictionary Compression via KOMP

$$\begin{split} \tilde{\mathcal{D}}_{t+1}, \, \tilde{\mathbf{w}}_{t+1} &\Rightarrow z_{t+1} \text{ params. w/o proj.} \\ &\rightarrow \{\mathcal{D}_{t+1}, \mathbf{w}_{t+1}\} = \mathsf{KOMP}(\tilde{\mathcal{D}}_{t+1}, \tilde{\mathbf{w}}_{t+1}, \epsilon) \\ &\Rightarrow \mathsf{params} \; \mathcal{D}_{t+1}, \, \mathbf{w}_{t+1} \; \mathsf{after projection} \end{split}$$

Pseudo-gradients

Stochastic grad. for PPP has integral \Rightarrow needs approximation

 \Rightarrow **Pseudo-gradients** \Rightarrow direction correlated w/ true grad ¹²

$$\langle \nabla R(f_t), \mathbb{E}[g_t|\mathcal{F}_t] \rangle \geq 0$$

- ⇒ e.g., Stochastic grad, Kernel embeddings, Gradient sign
- ightarrow Generic pseudo-gradient expression: $g=g'\kappa(\mathbf{x},\cdot)$
 - \Rightarrow Stochastic case: $g' = \ell'(f_t(\mathbf{x})) = \ell'(\nabla \psi^*(z(\mathbf{x})))$
- \rightarrow Kernel embedding $g_t = \langle \kappa(\mathbf{x}_t, \cdot), \nabla R(f_t) \rangle$
 - ⇒ smoothing to approximate integral in Poisson process

¹²B. Poljak and Y. Z. Tsypkin, "Pseudogradient adaptation and training algorithms," Automation and Remote Control, vol. 34, pp. 45–67, 1973

Sparse Representations of Positive

Functions via Projected Pseudo-Mirror Descent

```
Require: kernel \kappa, step-size \eta, compression parameter \epsilon
```

Initialize Arbitrary small z_0

for t = 1, 2, ... do Read: data x+

Evaluate: Pseudo Gradient $g_t = g_t' \kappa(x_t, \cdot)$

Update: $\tilde{z}_{t+1} = z_t - \eta g_t$

Update Dictionary: $\mathcal{D}_{t+1} = \mathcal{D}_t \cup \{\mathbf{x}_t\}$

Update weights:
$$[\mathbf{w}_{t+1}]_n = \begin{cases} [\mathbf{w}_t]_n & \mathbf{x}_n \in \mathcal{D}_t \\ -\eta \mathbf{g}_t' & \mathbf{x}_n = \mathbf{x}_t \end{cases}$$

Compress: $\{\mathcal{D}_{t+1}, \mathbf{w}_{t+1}\} = \mathsf{KOMP}(\tilde{\mathcal{D}}_{t+1}, \tilde{\mathbf{w}}_{t+1}, \epsilon)$

Broadcast: Z_{t+1}

end for

Evaluation of actual function $f_{t+1}(\mathbf{x}) = \nabla \psi^*(\mathbf{w}_{t+1}^\top \mathbf{k}_{\mathcal{D}_{t+1}}(\mathbf{x}))$

Technical Conditions

Assumption 1 g_t satisfies pseudo-gradient inequality:

$$\langle \nabla R(f_t), \mathbb{E}[g_t|\mathcal{F}_t] \rangle \geq 0$$
.

and its expectation bounded below by 2nd-moment of dual norm:

$$\mathbb{E}[\langle \nabla R(f_t), \mathbb{E}[g_t|\mathcal{F}_t] \rangle] \geq D\mathbb{E}[||\nabla R(f_t)||_*^2]$$

Assumption 2 The optimizer of R(f) is finite and satisfies the Polyak-Łojasiewicz (P-Ł) condition

$$\|\nabla R(f)\|_*^2 \geq 2\lambda [R(f) - R(f^*)],$$

Assumption 3 The function $R_{\psi}(\cdot)$ which takes as inputs the dual functions $z = \nabla \psi(f)$ is L_1 -smooth.

Assumption 4 Pseudo-gradient q_t satisfies variance growth condition

$$\mathbb{E}[\|g_t\|_*^2] \leq b^2 + c^2 \mathbb{E}[\langle \nabla R(f_t), \mathbb{E}[g_t|\mathcal{F}_t] \rangle],$$

SPPPOT Convergence

Theorem

For constant step-size $\eta < \min(\frac{1}{q_1}, \frac{q_1}{q_2})$ and compression $\epsilon = \alpha \eta$, the risk sub-optimality attenuates linearly up to a bounded neighborhood

$$\mathbb{E}[R(f_{t+1}) - R(f^*)] \le (1 - \rho)^t \mathbb{E}[R(f_0) - R(f^*)] + \frac{1}{\rho} \left[L_1 \eta^2 b^2 + \left(\frac{\eta \omega_1}{2} + L_1 \eta^2 \right) \alpha^2 \right],$$

where $\rho = q_1 \eta - q_2 \eta^2$, with constants $q_1 = 2\lambda \left(D - \frac{1}{2\omega_1}\right)$ and $q_2 = 2\lambda DL_1 c^2$.

SPPPOT Complexity

Assumption 5 Pseudo-gradient admits the form $g_t = g_t' \kappa(\mathbf{x}_t, \cdot)$ with

$$|g_t'| \leq C$$
.

Assumption 6 The feature space \mathcal{X} is compact.

Corollary

Denote as M_t the model order, or number of elements \mathbf{x}_t in the dictionary associated with dual function z_t at time t. Then, we have that $M_t \leq M^{\infty}$, where M^{∞} is the maximum model order possible. Moreover, M^{∞} satisfies

$$M^{\infty} \leq \mathcal{O}\left(\frac{1}{\epsilon}\right)^d$$

Experimental setup

Poisson process intensity of NBA dataset of Stephen Curry

- → Contains shot distances from basket as data $x \in \mathbb{R}$
- \rightarrow Compared SPPPOT with offline BFGS¹³ and online PMD¹⁴

Performance merits:

- ⇒ Test Loss between SPPPOT and BFGS
 - ightarrow PMD loss cannot be calculated for real world data
- ⇒ Learnt "normalized intensity" aka pdf for all
- ⇒ Computational time and complexity

¹³ S. Flaxman, Y.W. Teh, D. Sejdinovic et al., "Poisson intensity estimation with reproducing kernels," Electronic Journal of Statistics, vol. 11, no. 2, pp. 5081–5104, 2017.

¹⁴ Y. Yang, H. Wang, N. Kiyavash, and N. He, "Learning positive functions with pseudo mirror descent," in Advances in Neural Information Processing Systems, 2019, pp. 14 144–14 154.

Simulation results

SPPPOT beats the state of the art

- ⇒ Offline BFGS has high computational time/complexity
- ⇒ PMD employs fixed grid points, cannot extrapolate
- ⇒ SPPPOT has comparable complexity as PMD
 - → superior performance
- ⇒ SPPPOT ⇒ guarantees w/ compressed dictionary
- ⇒ PMD does not characterize error of fixed subspace approx.
- → additional experiments, Quasi-Newton variant in the journal

References

- ⇒ A. Chakraborty, K. Rajawat, and A. Koppel, "Projected Pseudo-Mirror Descent in Reproducing Kernel Hilbert Space," in, Asilomar Conference on Signals, Systems and Computers. IEEE, 2021.
- → A. Chakraborty, K. Rajawat, and A. Koppel, "Sparse representations of positive functions via projected pseudo-mirror descent," arXiv preprint arXiv:2011.07142, 2020.