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Supervised Learning

» Data D := {x;,y;}}¥.; drawn from some (unknown) dist. P(X,Y)

AN Supervised | )
{xi,yi}iz1| Data lenrhing \ Mcu:lelI f()
» The goal is to learn a function f(x) =y
» Select the appropriate function class for f say f € H
» Find the optimal f* within the selected class H

» How to perform that? —— > via minimizing a loss function
E’EVCDM



Supervised Learning

» /:H xY — R = defines merit of statistical model

f* = argmin R(f) := Ex y [((f(x),y)]

fer

= Examples: Squared loss, absolute loss

» Applications:

A
+ U718,

= spam detection, image classification, speech recognition etc.
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Spam detection
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Image classification

Speech recognition

» Remark: = interested in streaming settings = sequential samples

! DEvCoM



On Hyperparameter Tuning

» Classical offline approaches: backtesting/cross-validation
» Modern online approaches formulated as
= Bayesian inference’
= Multi-armed bandits?
» Bayesian inference
= requires likelihoods from a log-concave family
= beyond which it devolves into non-convex stochastic search®

» Multi-armed bandits
= Focuses only on the evolution of hyperparameters
= updates capturable by a black box reward*

» Proposed: Evolving hyperparameters during training
= originally as heuristic random search in genetic algorithms?®

17.D. Buiet al., “A unifying framework for GPs pseudo-point approx. using power expectation propagation,” in JMLR, 2017

2@G. Ghiasi et al., “Dropblock: A regularization method for convolutional networks,” in Advances in Neural Information Processing Systems, 2018

3D. M. Blei et al., “Variational inference: A review for statisticians,” Journal of the American statistical Association, vol. 112, no. 518, 2017

4A. S. Bedi et al., “Efficient gaussian process bandits by believing only informative actions,” arXiv preprint arXiv:2003.10550, 2020 E’Evcuu
5Mm. Mitchell, An introduction to genetic algorithms. MIT press, 1998.



Function class H

» 7 is Reproducing Kernel Hilbert Space (RKHS)
» Equipped with a unique kernel function, k : X x X — R, such that:

(1) f(x) = (f,r(x,-))n forallxe X,
(i) H = span{x(x,)} forallx € X .

» Property (i) = Will allow us to compute derivatives
» Kernel examples:

12
llx—x"]l3
2u?

f(x)

= Gaussian x(x,x’) = exp {— } polynomial (x”x’ + b)°
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Train via Stochastic Gradient

> SGD on R(f) = Exy[0(f(x),y)] + (\/2)IfI3, = sample (xi,y):

Serr = (1 =) fro = eV l(fr(Xn), yr)
= (L= e fro — el (f (%k), yn) (X, -)

» Newest feature vector x;, enters kernel dictionary X,
= with associated weight ¢'(f (xx), yx) := 0(fr(xk), yx)/Ofr (Xk)



Train via Stochastic Gradient

> SGD on R(f) := Exy [¢(f(x), )] + (\/2)[ f]13, = sample (xx,y&):
ferr = (1 =) fro — eV pl(fi(%k)5 yre)
= (1 =) fe — mel' (f (xn), o) (X, )
» Newest feature vector x;, enters kernel dictionary X,
= with associated weight ¢'(f (xx), yx) := 0(fr(xk), yx)/Ofr (Xk)

> Representer Theorem = fi.(x) = Y01 wpk(xn, x) = Wl kx, (X) .

» SGD: parametric updates on weights and dictionary

Xir1 = Xi, %), Wrgr = [(1=mN) Wi, =0l (fe(Xk), yr)]
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Train via Stochastic Gradient

> SGD on R(f) == Exy[((f(x),y)] + (\/2)|| I3, = sample (xx, y):

Jrr = X =mA) fe — eV e l(fr(Xk), Yie)
= (L= neA) fro — el (f (%i), yi) (X, -)
—_——

controlled by hyperparameters u

» Newest feature vector x; enters kernel dictionary X,
= with associated weight ¢/ (f(xx), yr) := 0(fr(Xk), yr) /O fr(xk)

k

> Representer Theorem = fi.(x) = S F "1 w,k(x,, x) = wlkx, (x) .

» SGD: parametric updates on weights and dictionary

Xir1 = Xn, %), Wipr = [(1=mN)wr, =0l (fe(Xk), yr)]
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Approach

» /:H xY — R = defines merit of statistical model

A
J* = axgmin By, [0/ (), 5, 0)] + 517
feH

= introduce parameters as control variables u € U
= Evolve according to a distribution P(f(x), y, u)
= Let r(f(x),y,u) be a model fitness for u

» Modified scheme = BARRETTE: Bayesian Nonparametric
Estimators with Adaptive Hyperparameters

X1 = [Xis X, Wigr = [(1—meN)wr, =il (fr(Xk), yr, 1)
= Hyperpar. update u,.,; ~ P(R; 1) where long-run cost Ry is

Rit1 = Ry + r(frg1(Xk), Yk, Ug)
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Convergence Result

» Let us define the sequence ¢y, = (fx, Rx), and Zy, = (Xp, Y&, ug)
» Rewrite algorithm update succinctly as ¢x11 = ¢x + e H (¢, Zk)
» Fort € [0,T], define interpolated process

O°(t) = dr, Z°(t) = Z, fort € [ke, (k+ 1)¢]

» Theorem: Under appropiate conditions, ¢¢ — ¢ weakly as k — oo,
where ¢ is limiting functional that maps sample path to a real
number.

> Limiting distribution is well defined equilibrium for min e R(f)
» L(f) strongly cvx. <= convergence in dist. to global optimizer

» Related Work:
= Convergence to SGD in Hllbert space®
= Weak convergence of tracking Markovian hyper-parameters’

» This work: study of their intertwined evolution

6. J. Kushner et al., “Stoch. approx. in Hilbert space: Identification and opt. of linear continuous parameter sys.,” SIAM J. Control Opt., 1985E'Evcuu
7M. Hamdi et al., “Tracking a markovmodulated stationary degree distribution of a dynamic random graph,” IEEE Trans. Inf. Theory, 2014.



Experiments

» Case where training examples for a fixed class
= drawn from a distinct Gaussian mixture

» 3 Gaussians per mixture, C' = 5 classes total for this experiment
= 15 total Gaussians generate data

multidist

” 2 0 2

» Grid colors = decision, bold black dots =- kernel dict. elements

Zhu, Ji, and Trevor Hastie. "Kernel logistic regression and the import vector machine.” NeurlPS, 2002.
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Experiments
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» We are able to learn the optimal bandwidth

Iterations

(d) Bandwidth
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Conclusion and Future Directions

» Proposed evolution of hyperparameters during traning
» Established link to existing supervised learning in RKHS
» Established its global convergence in distribution

» Verified the approach via experiments

» Future Directions: form basis for neural architecture search
= hyperparameter tuning of convolutional kernels
= distributed algorithms with localized (“personalized”) models
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