
Doubly Stochastic Algorithms
for Large-Scale Optimization

Alec Koppel, Aryan Mokhtari, and Alejandro Ribeiro

Abstract—We consider learning problems over training sets in
which both, the number of training examples and the dimension
of the feature vectors, are large. To solve these problems we
propose the random parallel stochastic algorithm (RAPSA). We
call the algorithm random parallel because it utilizes multiple
processors to operate in a randomly chosen subset of blocks
of the feature vector. We call the algorithm stochastic because
processors choose elements of the training set randomly and
independently. Algorithms that are parallel in either of these
dimensions exist, but RAPSA is the first attempt at a methodology
that is parallel in both, the selection of blocks and the selection
of elements of the training set. In RAPSA, processors utilize the
randomly chosen functions to compute the stochastic gradient
component associated with a randomly chosen block. We show
that this type of doubly stochastic approximation method, when
executed on an asynchronous parallel computing architecture,
exhibits comparable convergence behavior to that of classical
stochastic gradient descent on strongly convex functions – for
diminishing step-sizes, asynchronous RAPSA converges to the
minimizer of the expected risk. We illustrate empirical algorithm
performance on a linear estimation problem, as well as a binary
image classification using the MNIST handwritten digit dataset.

I. INTRODUCTION

Learning is often formulated as an optimization problem
that finds a classifier x∗ ∈ Rp that minimizes the average of a
loss function across the elements of a training set. Specifically,
consider a training set with N elements and let fn : Rp → R
be a convex loss function associated with the nth sample. The
optimal classifier x∗ ∈ Rp is the minimizer of the expected
risk F (x) := (1/N)

∑N
n=1 fn(x),

x∗ := argmin
x

F (x) := argmin
x

1

N

N∑
n=1

fn(x). (1)

Problems such as support vector machines, logistic regression,
and matrix completion can be put in the form of problem (1).
In this paper we are interested in large scale problems where
both, the number of features p and the number of elements N
in the training set are very large (p = O(N)) – which arise,
e.g., in text [2], image [3], and genomic [4] processing.

Problems that operate on blocks of the parameter vectors
or subsets of the training set, but not on both, blocks and
subsets, exist. Block coordinate descent (BCD) is the generic
name for methods in which the variable space is divided in
blocks that are processed separately. Early versions operate by

Work in this paper is supported by NSF CCF-1017454, NSF CCF-0952867,
ONR N00014-12-1-0997, ARL MAST CTA, and ASEE SMART. All proofs
are given in [1].

The authors are with the Department of Electrical and Systems Engineering,
University of Pennsylvania, 200 South 33rd Street, Philadelphia, PA 19104.
Email: {aryanm, akoppel, aribeiro}@seas.upenn.edu.

cyclically updating all coordinates at each step [5], [6], while
more recent parallelized versions of coordinate descent have
been developed to accelerate convergence of BCD [7]–[10].

Methods that utilize a subset of sample points, called
stochastic approximation, rely on the use of stochastic gra-
dients. Classically, the gradient of the aggregate function is
estimated by the gradient of a randomly chosen function fn
[11] called the stochastic gradient. Various recent develop-
ments have been aimed at accelerating the convergence of
this method such as Hessian approximation schemes which
incorporate higher-order information of the objective than just
the gradient [12]–[15].

When N and p are large, fusing the complexity properties
of parallel BCD and SGD becomes a necessity [16]–[19].
Motivated by this need, we propose the random adaptive
parallel stochastic algorithm (RAPSA), which is the first effort
to randomize over both parameters and sample functions. To
do so, we consider the case in which the parameter vector
x is divided into B blocks each of which contains pb � p
features and a set of I � B processors work in parallel
on randomly chosen feature blocks while using a stochastic
subset of elements of the training set. The blocks chosen for
update and the functions fetched for determination of block
updates are selected independently at random in subsequent
slots (Section II-A). Moreover, we consider the case where
this collection of I processors does not need to operate on
a universal time index, which means that variability in the
sparsity of data instances at distinct nodes will not cause a
processing bottleneck (Section II-B). We establish that the
convergence properties of asynchronous RAPSA are compa-
rable to best-known guarantees for stochastic gradient method
in the diminishing step-size regime (Section III). We then
numerically evaluate the proposed method on a simple linear
estimation problem as well as the MNIST digit recognition
problem (Section IV).

II. ALGORITHM DEVELOPMENT

We consider a generalization of (1) where the number N
of functions fn is not necessarily finite by introducing a
random variable θ ∈ Θ ⊂ Rq that determines the choice
of the random smooth convex function f(·,θ) : Rp → R.
We focus on the problem of minimizing the expected risk
F (x) := Eθ[f(x,θ)],

x∗ := argmin
x∈Rp

F (x) := argmin
x∈Rp

Eθ [f(x,θ)] . (2)

Problem (1) is a particular case of (2) in which each of the
functions fn is drawn with probability 1/N . We refer to f(·,θ)
as instantaneous functions and to F (x) as the average function.



A. Parallel Doubly Stochastic Approximation

RAPSA utilizes I processors to update a random subset of
blocks of the variable x, with each of the blocks relying on
a subset of randomly and independently chosen elements of
the training set. Formally, decompose the variable x into B
blocks to write x = [x1; . . . ; xB ], where block b has length pb
so that we have xb ∈ Rpb . At iteration t, processor i selects
a random index bti for updating and a random subset Θt

i of
L instantaneous functions. It then uses these instantaneous
functions to determine stochastic gradient components for the
subset of variables xb = xbti as an average of the components
of the gradients of the functions f(xt,θ) for θ ∈ Θt

i,

∇xb
f(xt,Θt

i) =
1

L

∑
θ∈Θt

i

∇xb
f(xt,θ), b = bti. (3)

Note that L can be interpreted as the mini-batch size for
gradient approximation. The stochastic gradient block in (3)
is then modulated by a possibly time varying stepsize γt and
used by processor i to update the block xb = xbti

xt+1
b = xtb − γt∇xb

f(xt,Θt
i) b = bti. (4)

RAPSA is defined by the joint implementation of (3) and (4)
in parallel among a collection of I processors. We would
like to emphasize that the number of updated blocks which
is equivalent to the number of processors I is not necessary
equal to the total number of blocks B. In other words, we may
update only a subset of coordinates I/B < 1 at each iteration.
We define r := I/B as the ratio of the updated blocks to the
total number of blocks which is smaller than 1.

The selection of blocks is coordinated so that no processors
operate in the same block. The selection of elements of x is
uncoordinated across processors. The fact that at any point
in time a random subset of blocks is being updated utilizing
a random subset of elements of the training set means that
RAPSA requires almost no coordination between processors.
Moreover, these processors are not even required to operate
on a global time index, as we discuss next.

B. Asynchronous Computing Architectures

Up to this point, the RAPSA method dictates that distinct
parallel processors select blocks bti ∈ {1, . . . , B} uniformly at
random at each time step t. However, the requirement that each
processor operates on a common time index is burdensome for
parallel operations on large computing clusters, as it means
that nodes must wait for the processor which has the longest
computation time at each step before proceeding. Thus, we
extend the method developed in Sections II-A such the parallel
processors need not to operate on a globally coordinated
clock, and establish its convergence, so long as the degree
of their asynchronicity is bounded in a certain sense. In doing
so, we alleviate the computational bottleneck in the parallel
architecture, allowing processors to continue processing data
as soon as their local task is complete.

Consider the case where each processor operates asyn-
chronously. In this case, at an instantaneous time index t,
only one processor executes an update, as all others are

assumed to be busy. If two processors complete their prior
task concurrently, then they draw the same time index at
the next available slot, in which case the tie is broken at
random. Suppose processor i selects block bti ∈ {1, . . . , B}
at time t. Then it grabs the associated component of the
decision variable xtb and computes the stochastic gradient
∇xb

f(xt,Θt
i) associated with the samples Θt

i. This process
may take time and during this process other processors may
overwrite the variable xb. Consider the case that the process
time of computing stochastic gradient or equivalently the
descent direction is τ . Thus, when processor i updates the
block b using the evaluated stochastic gradient ∇xb

f(xt,Θt
i),

it performs the update

xt+τ+1
b = xt+τb − γt+τ ∇xb

f(xt,Θt
i) b = bti. (5)

Thus, the descent direction evaluated based on the available
information at step t is used to update the variable at time t+τ .
Note that the delay comes from asynchronous implementation
of the algorithm and the fact that other processors are able
to modify the variable xb during the time that processor i
computes its descent direction. We assume the random time τ
that each processor requires to compute its descent direction is
bounded above by a constant ∆, i.e., τ ≤ ∆ – see Assumption
4. Despite the minimal coordination of the asynchronous
random parallel stochastic algorithm in (5), we establish the
comparable performance guarantees to that of the classical
SGD process for strongly-convex functions – see Section III.

Remark 1 One may raise the concern that there could be
instances that two processors or more work on a same block.
Although, this event is not very likely since I << B, there
is a positive chance that it might happen. This is true since
the available processor picks the block that it wants to operate
on uniformly at random from the set {1, . . . , B}. We show
that this event does not cause any issues and the algorithm
can eventually converge to the optimal argument even if more
than one processor work on a specific block at the same time.

III. CONVERGENCE ANALYSIS

In this section, we study the convergence of Asynchronous
RAPSA and we characterize the effect of delay in the asyn-
chronous implementation. All proofs are given in [1]. To do
so, define the set St containing the blocks that are updated at
step t with associated indices It ⊂ {1, . . . , B}. Then we may
rewrite the asynchronous RAPSA update [cf. (5)] as

xt+1
i = xti − γt ∇xi

f(xt−τ ,Θt−τ
i ) ∀ xi ∈ St, (6)

while blocks i /∈ It remain unchanged: xt+1
i = xti, xi /∈ St.

Note that the random set It and the associated block set
St are chosen at time t − τ in practice; however, for the
sake of analysis we can assume that these sets are chosen
at time t. In other words, we can assume that at step t − τ
processor i computes the full (for all blocks) stochastic gra-
dient ∇f(xt−τ ,Θt−τ

i ) and after finishing this task at time
t, it chooses uniformly at random the block that it wants to
update. Thus, the block xi in (6) is chosen at step t. This new
interpretation of the update of asynchronous RAPSA is only
important for convergence analysis.



Next we introduce technical conditions which are necessary
to prove convergence.
(A1) The instantaneous objective functions f(x,θ) are dif-

ferentiable and the average function F (x) is strongly
convex with parameter m > 0.

(A2) The average objective function gradients ∇F (x) are
Lipschitz continuous with respect to the Euclidian norm
with parameter M . I.e., for all x, x̂ ∈ Rp, it holds

‖∇F (x)−∇F (x̂)‖ ≤ M ‖x− x̂‖. (7)

(A3) The conditional second moment of the stochastic gradi-
ent is bounded for all x, i.e., there exists a constant K
such that for all variables x, it holds

Eθ

[
‖∇f(xt,θt)‖2

∣∣xt] ≤ K. (8)

(A4) The random variable τ which is the delay between
reading and writing for processors does not exceed the
constant ∆, i.e., τ ≤ ∆.

Notice that Assumption (A1) only enforces strong convexity
of the average function F , while the instantaneous functions fi
need not be convex. Further, notice that since the instantaneous
functions fi are differentiable the average function F is also
differentiable. The Lipschitz continuity of the average function
gradients ∇F is customary in proving objective function
convergence for descent algorithms. The restriction imposed
by Assumption (A3) is a standard condition in stochastic
approximation literature [11], its intent being to limit the
variance of the stochastic gradients [20]. The condition in
Assumption (A4) implies that processors can finish their tasks
in a time that is bounded by the constant ∆, which is typical
in the analysis of asynchronous algorithms.

Our first result comes in the form of a expected descent
lemma that relates the expected difference of subsequent
iterates to the gradient of the instantanteous function, where
the expectation is taken with respect to the block selection.

Lemma 1 Consider the asynchronous random parallel
stochastic algorithm defined in (5). Recall the definitions of the
set of updated blocks It which are randomly chosen from the
total B blocks. Define F t as a sigma algebra that measures the
history of the system up until time t. Then, under Assumptions
(A1) - (A4), the expected value of the difference xt+1 − xt

with respect to the random set It given F t is

EIt
[
xt+1 − xt | F t

]
= −γ

t

B
∇f(xt−τ ,Θt−τ ). (9)

Moreover, the expected value of the squared norm ‖xt+1−xt‖2
with respect to the random set St given F t simplifies to

EIt
[
‖xt+1 − xt‖2 | F t

]
=

(γt)2

B

∥∥∇f(xt−τ ,Θt−τ )
∥∥2 .

(10)

In the asynchronous scheme only one of the blocks is
updated at each iteration, so the ratio r can be simplified as
1/B, which results in the coefficient 1/B on the right-hand
side of the expressions in Lemma 1. We use these results to
characterize the decrement in the expected sub-optimality in
the following proposition.

Proposition 1 Consider the asynchronous random parallel
stochastic algorithm defined in (5). If Assumptions (A1) - (A4)
hold, then the objective error sequence F (xt)−F (x∗) satisfies

E
[
F (xt+1)− F (x∗) | F t−τ

]
≤
(

1− 2mγt

B

[
1− ρM

2

])
E
[
F (xt)− F (x∗) | F t−τ

]
+
MK(γt)2

2B
+
τ2MKγt(γt−τ )2

2ρB2
. (11)

The scalar parameter ρ comes from an application of
a generalized triangle inequality expression of the form
ab ≤ (ρ/2)a2 + (1/2ρ)b2 with a = ‖∇F (xt)‖ and b =∑t−1
s=t−τ ‖xs+1 − xs‖ that appears in the proof. We proceed

to use the result in Proposition 1 to prove that the sequence of
iterates generated by asynchronous RAPSA converges to the
optimal argument x∗ defined by (2).

Theorem 1 If Assumptions (A1) - (A4) hold true and the
sequence of stepsizes are non-summable

∑∞
t=0 γ

t = ∞ and
square summable

∑∞
t=0(γt)2 < ∞, then sequence of the

variables {xt} generated by RAPSA converges almost surely
to the optimal argument x∗,

lim inf
t→∞

‖xt − x∗‖2 = 0 a.s. (12)

If step-size is defined as γt := γ0T 0/(t + T 0) and the step-
size parameters are chosen such that 2mrγ0T 0 > 1, then the
expected average function error E [F (xt)− F (x∗)] converges
to null at least with a sublinear convergence rate O(1/t),

E
[
F (xt)− F (x∗)

]
≤ C

t+ T 0
, (13)

where the constant C is defined as

C = max
{MK(γ0T 0)2/2B + (τ2MK(γ0T 0)3)(2ρB2)

(2mγ0T 0/B)(1− ρM/2)− 1
,

T 0(F (x0)− F (x∗))
}

(14)

The result in Theorem 1 shows that when the sequence of
stepsize is diminishing as γt = γ0T 0/(t + T 0), the average
objective function value F (xt) sequence converges to the
optimal objective value F (x∗) with probability 1.1 Further,
the rate of convergence in expectation is at least in the order
of O(1/t). Moreover, the sequence xt converges exactly to the
optimal x∗. These results for the attenuating step-size regime
are comparable to those which are attainable by stochastic
gradient method in the strongly convex case.

IV. NUMERICAL ANALYSIS

In this section we study the numerical performance of
the doubly stochastic approximation algorithm developed in
Section II by first considering a linear regression problem. We
then use RAPSA to develop an automated decision system to
distinguish between distinct hand-written digits.

1The expectation on the left hand side of (13), and throughout the
subsequent convergence rate analysis, is taken with respect to the algorithm
history F0, which contains all randomness in both Θt and It for all t ≥ 0.



0 100 200 300 400 500 600 700 800 900 1000

t, iteration index

20

30

40

50

60

F
(
x
t
)
−
F
(
x
∗
)
,
O
b
j.

E
r
r
o
r
S
e
q
u
e
n
c
e

µ = 1,σ = .1
µ = 1,σ = .3
µ = 2,σ = .1
Synchronous

(a) Sub-optimality F (xt)− F (x∗) vs. iteration t

0 200 400 600 800 1000

t, iteration index

20

30

40

50

60

F
(
x
t
)
−
F
(
x
∗
)
,
O
b
j.

E
r
r
o
r
S
e
q
u
e
n
c
e

µ = 1,σ = .1
µ = 1,σ = .3
µ = 2,σ = .1
Synchronous

(b) Sub-optimality F (xt)− F (x∗) vs. iteration t

Fig. 1: Synchronous and Asynchronous RAPSA on the linear estimation problem in the constant (γ = 104, left) and diminishing (γt =
106/(t + 250), right) step-size schemes with no mini-batching L = 1 for a binary training subset of size N = 103 with no regularization
λ = 0 when the algorithm is initialized as x0 = 103×1. Varying the asynchronicity distribution has little effect, but we find that convergence
behavior is slower than its synchronized counterpart, as expected.

A. Linear Regression

We consider a setting in which observations zn ∈ Rq are
collected which noisy linear transformations zn = Hnx+wn

of a signal x ∈ Rp which we would like to estimate, and
w ∼ N (0, σ2Iq) is a Gaussian random variable. For a finite set
of samples N , the optimal x∗ is computed as the least squares
estimate x∗ := argminx∈Rp(1/N)

∑N
n=1 ‖Hnx − zn‖2. We

run RAPSA on LMMSE estimation problem instances where
observations are of dimension q = 1. The observation matrices
Hn ∈ Rq×p, when stacked over all n (an N × p matrix), are
according to a matrix normal distribution whose mean is a tri-
diagonal matrix. The main diagonal is 2, while the super and
sub-diagonals are all set to −1/2. Moreover, the true signal
has entries chosen uniformly at random from the fractions
x ∈ {1, . . . , p}/p. Additionally, the noise variance perturbing
the observations is set to σ2 = 10−2. We assume that the
number of processors I = 16 is fixed and each processor is
in charge of 1 block. We consider different number of blocks
B = {16, 32, 64, 128}. Note that when the number of blocks
is B, there are p/B = 1024/B coordinates in each block.

The model we use for asynchronicity is modeled after a
random delay phenomenon in physical communication sys-
tems that in which each local server has a distinct local clock
which is not required coincide with others. Each processor’s
clock begins at time ti0 = t0 for all processors i = 1, . . . , I
and selects subsequent times as tk = tk−1 + wik, where
wik ∼ N (µ, σ2) is a normal random variable with mean µ and
variance σ2. The variance in this model effectively controls the
amount of variability between the clocks of distinct processors.

We run Asynchronous RAPSA for the linear estimation
problem when the parameter vector x is p = 500 dimensional
for N = 103 iterations with no mini-batching L = 1 for
both the case that the algorithm step-size is diminishing and
constant step-size regimes. The algorithm is initialized as
x0 = 103 × 1. We run the algorithm for a few different
instantiations of asynchronicity, that is, wik ∼ N (µ, σ2) with
µ = 1 or µ = 2, and σ = .1 or σ = .3.

The results of this numerical experiment are given in Figure
1 for both the constant and diminishing step-size schemes. We
see that the performance of the asynchronous parallel scheme
is comparable across different levels of variability among the
local clocks of each processor. In particular, in Figure 1a
which corresponds to the case where the algorithm is run
with constant step-size γ = 10−2, we observe comparable
performance in terms of the objective function error sequence
F (xt) − F (x∗) with iteration t – across the varying levels
of asynchrony we have F (xt) − F (x∗) ≤ 10 by t = 103.
This trend may also be observed in the diminishing step-
size scheme γt = 1/t which is given in Figure 1b. That
is, the distance to the optimal objective is nearly identical
across differing levels of asynchronicity. In both cases, the
synchronized algorithm performs better than its asynchronous
counterpart.

B. Hand-Written Digit Recognition

We now make use of RAPSA for digit classification. To do
so, let z ∈ Rp be a feature vector encoding pixel intensities
of an image and let y ∈ {−1, 1} be an indicator variable
of whether the image contains the digit 0 or 8, in which
case the binary indicator is respectively y = −1 or y = 1.
We model the task of learning a hand-written digit detector
as a logistic regression problem, where one aims to train a
classifier x ∈ Rp to determine the relationship between feature
vectors zn ∈ Rp and their associated labels yn ∈ {−1, 1}
for n = 1, . . . , N . The instantaneous function fn in (1) for
this setting is the regularized negative log-likelihood of a
generalized linear model of the odds ratio of whether the
label is yn = 1 or yn = −1. The empirical risk minimization
associated with training set T = {(zn, yn)}Nn=1 is to find x∗

as the maximum a posteriori estimate

x∗ := argmin
x∈Rp

λ

2
‖x‖2 +

1

N

N∑
n=1

log(1 + exp(−ynxT zn)) ,

(15)



0 100 200 300 400 500 600 700 800 900 1000

t, iteration index

10
-1

10
0

10
1

10
2

F
(
x
t
)
=

1 N

∑
N n
=
1
f
n
(
x
t
)
,
O
b
je
c
t
iv
e

µ = 1,σ = .1
µ = 1,σ = .3
µ = 2,σ = .1
Synchronous

(a) Objective F (xt) vs. iteration t

0 100 200 300 400 500 600 700 800 900 1000

t, iteration index

10
-1

10
0

10
1

10
2

F
(
x
t
)
=

1 N

∑
N n
=
1
f
n
(
x
t
)
,
O
b
je
c
t
iv
e

µ = 1,σ = .1
µ = 1,σ = .3
µ = 2,σ = .1
Synchronous

(b) Objective F (xt) vs. iteration t

Fig. 2: Asynchronous RAPSA on MNIST data in the constant (γ = 10−2, left) and diminishing (γt = 1/t, right) step-size schemes with no
mini-batching L = 1 for a binary training subset of size N = 103 with no regularization λ = 0 when the algorithm is initialized as x0 = 1.
The variability in local processor clocks does not significantly impact performance in both the diminishing and constant step-size settings;
however, the synchronous algorithm converges at a faster rate.

where the regularization term (λ/2)‖x‖2 is added to avoid
overfitting. We use the MNIST dataset [21], in which feature
vectors zn ∈ Rp are p = 282 = 784 pixel images whose values
are recorded as intensities, or elements of the unit interval
[0, 1]. We consider a subset associated with digits 0 and 8.

The model we use for asynchronicity is the one outlined in
Section IV-A, that is, each local processor has a distinct local
clock which is not required coincide with others, begins at
time ti0 = t0 for all processors i = 1, . . . , I , and then selects
subsequent times as tk = tk−1 +wik. Here wik ∼ N (µ, σ2) is
a normal random variable with mean µ and variance σ2 which
controls the amount of variability between the clocks of dis-
tinct processors. We run the algorithm with no regularization
λ = 0 or mini-batching L = 1 and initialization x0 = 1.

The results of this numerical setup are given in Figure 2.
We consider the expected risk F (xt) in both both the constant
(γ = 10−2, Figure 2a) and diminishing (γt = 1/t, Figure 2b)
algorithm step-size schemes. We see that the level of asyn-
chronicity does not significantly impact the performance in
either scheme, and that the convergence guarantees established
in Theorem 1 hold true in practice.

REFERENCES

[1] A. Mokhtari, A. Koppel, and A. Ribeiro, “A class of parallel doubly
stochastic algorithms for large-scale learning,” arXiv preprint arXiv,
1606.04991, 2016.

[2] G. Sampson, R. Haigh, and E. Atwell, “Natural language analysis by
stochastic optimization: A progress report on project april,” J. Exp.
Theor. Artif. Intell., vol. 1, no. 4, pp. 271–287, Oct. 1990. [Online].
Available: http://dx.doi.org/10.1080/09528138908953710

[3] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online learning for matrix
factorization and sparse coding,” The Journal of Machine Learning
Research, vol. 11, pp. 19–60, 2010.

[4] M. Taşan, G. Musso, T. Hao, M. Vidal, C. A. MacRae, and F. P.
Roth, “selecting causal genes from genome-wide association studies via
functionally coherent subnetworks,” Nature methods, 2014.

[5] P. Tseng and C. O. L. Mangasarian, “Convergence of a block coordinate
descent method for nondifferentiable minimization,” J. Optim Theory
Appl, pp. 475–494, 2001.

[6] Y. Xu and W. Yin, “A globally convergent algorithm for noncon-
vex optimization based on block coordinate update,” arXiv preprint
arXiv:1410.1386, 2014.

[7] Z. Lu and L. Xiao, “On the complexity analysis of randomized block-
coordinate descent methods,” Mathematical Programming, pp. 1–28,
2013.

[8] Y. Nesterov, “Efficiency of coordinate descent methods on huge-scale
optimization problems,” SIAM Journal on Optimization, vol. 22, no. 2,
pp. 341–362, 2012.

[9] J. Liu, S. J. Wright, C. Ré, V. Bittorf, and S. Sridhar, “An asynchronous
parallel stochastic coordinate descent algorithm,” The Journal of Ma-
chine Learning Research, vol. 16, no. 1, pp. 285–322, 2015.

[10] F. Facchinei, G. Scutari, and S. Sagratella, “Parallel selective algorithms
for nonconvex big data optimization,” Signal Processing, IEEE Trans-
actions on, vol. 63, no. 7, pp. 1874–1889, 2015.

[11] H. Robbins and S. Monro, “A stochastic approximation method,”
Ann. Math. Statist., vol. 22, no. 3, pp. 400–407, 09 1951. [Online].
Available: http://dx.doi.org/10.1214/aoms/1177729586

[12] N. N. Schraudolph, J. Yu, and S. Günter, “A stochastic quasi-newton
method for online convex optimization,” in International Conference on
Artificial Intelligence and Statistics, 2007, pp. 436–443.

[13] A. Bordes, L. Bottou, and P. Gallinari, “Sgd-qn: Careful quasi-newton
stochastic gradient descent,” The Journal of Machine Learning Research,
vol. 10, pp. 1737–1754, 2009.

[14] A. Mokhtari and A. Ribeiro, “Res: Regularized stochastic bfgs algo-
rithm,” Signal Processing, IEEE Transactions on, vol. 62, no. 23, pp.
6089–6104, 2014.

[15] ——, “Global convergence of online limited memory bfgs,” Journal of
Machine Learning Research, vol. 16, pp. 3151–3181, 2015. [Online].
Available: http://jmlr.org/papers/v16/mokhtari15a.html

[16] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-free approach
to parallelizing stochastic gradient descent,” in Advances in Neural
Information Processing Systems, 2011, pp. 693–701.

[17] Y. Yang, G. Scutari, and D. P. Palomar, “Parallel stochastic decomposi-
tion algorithms for multi-agent systems,” in Signal Processing Advances
in Wireless Communications (SPAWC), 2013 IEEE 14th Workshop on.
IEEE, 2013, pp. 180–184.

[18] A. Koppel, B. M. Sadler, and A. Ribeiro, “Proximity without consensus
in online multi-agent optimization.” in Proc. Int. Conf. Acoust. Speech
Signal Process., March 20-25 2016.

[19] A. Koppel, F. Jakubiec, and A. Ribeiro, “A saddle point algorithm for
networked online convex optimization,” IEEE Trans. Signal Process.,
p. 15, Oct 2015.

[20] A. Nemirovski, A. Juditsky, and A. Shapiro, “Robust stochastic ap-
proximation approach to stochastic programming,” SIAM Journal on
optimization, vol. 19, no. 4, pp. 1574–1609, 2009.

[21] Y. Lecun and C. Cortes, “The MNIST database of handwritten digits.”
[Online]. Available: http://yann.lecun.com/exdb/mnist/

http://dx.doi.org/10.1080/09528138908953710
http://dx.doi.org/10.1214/aoms/1177729586
http://jmlr.org/papers/v16/mokhtari15a.html
http://yann.lecun.com/exdb/mnist/

	Introduction
	Algorithm Development
	Parallel Doubly Stochastic Approximation
	Asynchronous Computing Architectures

	Convergence Analysis
	Numerical analysis
	Linear Regression
	Hand-Written Digit Recognition

	References

